Observations of Open Fractures in Carbonate Reservoir Rocks, Implications for Fluid Flow Simulations

Author(s):  
O.P. Wennberg ◽  
G. Casini ◽  
S. Jonoud ◽  
M.H. Norozi
2009 ◽  
Author(s):  
Ole Petter Wennberg ◽  
Giulio Casini ◽  
Sima Jonoud ◽  
Mohammad Hossein Norozi

2009 ◽  
Author(s):  
Ole Petter Wennberg ◽  
Giulio Casini ◽  
Sima Jonoud ◽  
Mohammad Hossein Norozi

GeoArabia ◽  
2000 ◽  
Vol 5 (2) ◽  
pp. 299-322 ◽  
Author(s):  
Adrian Immenhauser ◽  
Anouk Creusen ◽  
Mateu Esteban ◽  
Hubert B. Vonhof

ABSTRACT Discontinuity surfaces that recorded superposition of marine hardground and subaerial exposure stages are common in the Middle Cretaceous of northern Oman. These surfaces formed during periods of rapid sea-level drop. The marine hardground stages are dominant in the field, whereas the subaerial exposure stage is documented in circumstantial petrographic, geochemical, and biological evidence. The record of a shoaling phase prior to exposure is commonly subtle and incomplete; supratidal deposits are conspicuously absent. Porosity in the limestones underlying the discontinuities is rearranged during subaerial exposure and subsequent burial and hence the permeability of large volumes of limestone is affected at a variety of scales. During marine hardground stages, carbonate cements, iron oxides, and manganese occludes some of the existing pore space. During burial, these intervals may thus have acted as either seals or efficient conduits of fluid flow. The surfaces under study in the Shu’aiba, Nahr Umr, and Natih formations are spaced ten to few tens of meters apart and many of them were traced laterally over distances of 100 kilometers and more between sections at Jebel Akhdar and in the Foothills. This implies that they play an important, but poorly understood role in compartmentalization of carbonate reservoir rocks.


1990 ◽  
Vol 45 (1) ◽  
pp. 71-77 ◽  
Author(s):  
D. Guerillot ◽  
J. L. Rudkiewicz ◽  
C. Ravenne ◽  
G. Renard ◽  
A. Galli

Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Miller Zambrano ◽  
Alan D. Pitts ◽  
Ali Salama ◽  
Tiziano Volatili ◽  
Maurizio Giorgioni ◽  
...  

Fluid flow through a single fracture is traditionally described by the cubic law, which is derived from the Navier-Stokes equation for the flow of an incompressible fluid between two smooth-parallel plates. Thus, the permeability of a single fracture depends only on the so-called hydraulic aperture which differs from the mechanical aperture (separation between the two fracture wall surfaces). This difference is mainly related to the roughness of the fracture walls, which has been evaluated in previous works by including a friction factor in the permeability equation or directly deriving the hydraulic aperture. However, these methodologies may lack adequate precision to provide valid results. This work presents a complete protocol for fracture surface mapping, roughness evaluation, fracture modeling, fluid flow simulation, and permeability estimation of individual fracture (open or sheared joint/pressure solution seam). The methodology includes laboratory-based high-resolution structure from motion (SfM) photogrammetry of fracture surfaces, power spectral density (PSD) surface evaluation, synthetic fracture modeling, and fluid flow simulation using the Lattice-Boltzmann method. This work evaluates the respective controls on permeability exerted by the fracture displacement (perpendicular and parallel to the fracture walls), surface roughness, and surface pair mismatch. The results may contribute to defining a more accurate equation of hydraulic aperture and permeability of single fractures, which represents a pillar for the modeling and upscaling of the hydraulic properties of a geofluid reservoir.


Sign in / Sign up

Export Citation Format

Share Document