carbonate cements
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 2)

Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Zhenhuan Shen ◽  
Zhuang Ruan ◽  
Bingsong Yu ◽  
Shujun Han ◽  
Chenyang Bai ◽  
...  

Diagenesis typically exerts a crucial impact on the formation of high-quality sandstone reservoirs in the Eocene Shahejie Formation, Dongying Depression. To better understand the formation process of petrophysical properties, this research conducts petrographic and geochemical analyses to investigate the nature of diagenetic fluids. Petrographic observations suggest that the dominant cements are carbonate, authigenic quartz, and clay minerals, accompanied with the dissolution of feldspar and calcite. The homogenization temperature of aqueous inclusions in quartz overgrowth usually exceeds 90°C corresponding to the maturity of organic matter. Quartz overgrowths contain higher amounts of CaO and Al2O3 than detrital quartz. This indicates that the siliceous fluid mainly originates from the dissolution of feldspar. Moreover, the conversion of clay minerals also provides trace amounts of silica into pore water during the burial process. Carbonate cements consist of early-stage calcite as well as late-stage Fe-calcite and ankerite. Calcite with relatively higher MnO proportions shows yellow luminescence and dissolution signs. Fe-calcite and ankerite cements have a higher homogenization temperature than that of quartz overgrowth and mainly concentrate in FeO and MgO as well as contain a small amount of Na+, K+, and Sr2+. The rare earth element (REE) pattern of bulk mudstone and carbonate cements as well as C–O isotopic evidences indicate that the diagenetic fluids of carbonate cementation are primarily controlled by the adjacent mudstone, whereas mineral dissolution and altered clay minerals in sandstone provide additional cations for the local reprecipitation of late-stage carbonate. Therefore, diagenetic fluids within sandstone reservoirs are typically subject to alkaline–acid–alkaline conditions and are influenced by internal sources in a closed system. Compaction significantly reduces the pore space of sandstone reservoirs in the Boxing Sag. Carbonate cementation further increases the complexity of pore structure and obeys the principle of mass balance.


AAPG Bulletin ◽  
2022 ◽  
Vol 106 (1) ◽  
pp. 209-240
Author(s):  
Guoqiang Luan ◽  
Karem Azmy ◽  
Chunmei Dong ◽  
Chengyan Lin ◽  
Lihua Ren ◽  
...  

2021 ◽  
pp. 57-68
Author(s):  
N. Yu. Moskalenkо

The relevance of the article is associated with the importance of the object of the research. Dozens of unique and giant oil and gas fields, such as Urengoyskoye, Medvezhye, Yamburgskoye, Vyngapurovskoye, Messoyakhskoye, Nakhodkinskoye, Russkoye, have been identified within the Cenomanian complex. The main feature of Cenomanian rocks is their slow rock cementation. This leads to significant difficulties in core sampling and the following studies of it; that is the direct and most informative source of data on the composition and properties of rocks that create a geological section.The identification of the factors, which determine the slow rock cementation of reservoir rocks, allows establishing a certain order in sampling and laboratory core studies. Consequently, reliable data on the reservoir and estimation of hydrocarbon reserves both of discovered and exploited fields and newly discovered fields that are being developed on the territory of the Gydan peninsula and the Bolshekhetskaya depression will be obtained. This study is also important for the exploration and development of hydrocarbon resources of the continental shelf in the waters of the Arctic seas of Russia as one of the most promising areas.As a result of the analysis, it was found that the formation of rocks of the PK1-3 Cenomanian age of the Bolshekhetskaya depression happened under conditions of normal compaction of terrigenous sedimentary rocks that are located in the West Siberian basin. Slow rock cementation of reservoir rocks is associated with relatively low thermobaric conditions of their occurrence, as well as the low content of clay and absence of carbonate cements. Their lithological and petrophysical characteristics are close to the analogous Cenomanian deposits of the northern fields of Western Siberia and can be applied to other unconsolidated rocks studied areas.


2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Wang ◽  
Shuai Yin ◽  
Zhongmin Shen ◽  
Tong Zhu ◽  
Wenkai Zhang

Formation water represents an important driving force and carrier for the migration and accumulation of oil and gas; thus, research on its origin is a hot spot in petroleum geology. The Upper Triassic Xujiahe Formation in the Xiaoquan-Fenggu Structural Belt in the western Sichuan Depression, China, has developed thick tight sandstone gas reservoirs. However, previous studies have provided different conclusions on the origin of the formation water in the Xujiahe tight sandstone reservoir. In this paper, the origin of the formation water in the Xujiahe Formation was determined based on the latest major and minor elemental concentration data, hydrogen and oxygen isotopes data of formation water, and carbon and oxygen isotope data of carbonate cements. The results show that the salinity of the formation water of the Xujiahe Formation in the study area is generally greater than 50 g/L. The water type is mainly the CaCl2 type, although a small proportion of NaHCO3 type water with high salinity is observed, which is related to hydrocarbon expulsion by overpressure. Moreover, the formation water in the sandstone of the Xujiahe Formation is obviously rich in Br, which is related to membrane infiltration, overpressured hydrocarbon expulsion of shale and diagenesis of organic matter. The composition of Cl− and Na+ ions in the formation water in the Xujiahe tight sandstone reservoir is consistent with the seawater evaporation curve, which deviates significantly from the freshwater evaporation curve. The hydrogen and oxygen isotopes of condensate water in the Xujiahe Formation tight sandstone are similar to those of atmospheric precipitation water, while the hydrogen and oxygen isotopes of the formation water in the Xujiahe Formation show that it is of seawater origin. Therefore, to use hydrogen and oxygen isotopes to determine the origin of formation water, condensate water must be accurately differentiated from formation water. Otherwise, if the condensate water is misjudged as formation water, then incorrect conclusions will be drawn, e.g., that the formation water of the Xujiahe Formation originated from fresh water. Affected by organic carbon, the carbon isotope Z value of the carbonate cements in the Xujiahe Formation is low (mainly distributed between 110 and 130). A Z value of less than 120 does not indicate that the ancient water bodies formed by cements were fresh water or mixed water bodies. However, Z values greater than 120 correspond to a formation temperature lower than 80 C, which indicates that carbonate cement was not affected by organic carbon; thus, the Z value can reflect the origin of ancient water bodies. The results of this study indicate that the formation water of the Xujiahe tight sandstone in the study area is of seawater origin. The determination of the origin of the formation water and seawater of the Xujiahe Formation provides strong evidence for the determination of the marine sedimentary environment of the Xujiahe Formation in the study area, and can provide scientific guidance for the search for high-quality reservoirs.


2021 ◽  
pp. 1-63
Author(s):  
Lauri A. Burke ◽  
Justin E. Birdwell ◽  
Stanley T. Paxton

Traditional petrophysical methods to evaluate organic richness and mineralogy using gamma ray and resistivity log responses are not diagnostic in source rocks. This study presents a deterministic, non-proprietary method to quantify formation variability in total organic carbon (TOC) and three key mudrock mineralogical components of non-hydrocarbon bearing source rock strata of the Eagle Ford Group by developing a set of log-derived multimineral models calibrated with FTIR core data from the research borehole USGS Gulf Coast #1 West Woodway. This study determined bulk density response is a reliable indicator of organic content in these thermally immature, water-bearing source rocks.Multimineral findings indicate a high degree of laminae-scale mineralogical heterogeneity exists due to thinly interbedded carbonate cements amid clay-rich mudstone layers. The lower part of the Eagle Ford Group contains the highest average TOC content (4.7 wt%) and the highest average carbonate volume (64.1 vol%), making it the optimal target in thermally mature areas for source rock potential and hydraulic fracture placement. In contrast, the uppermost portion of the Eagle Ford Group contains the highest average volume of clay minerals (42.6 vol%), which increases the potential for wellbore stability issues. Petrophysical characterization reveals porosity is approximately 30% in this relatively uncompacted formation. In this thermally immature source rock, water saturation is nearly 100% and no free hydrocarbons were observed on the resistivity logs. No evidence of borehole ellipticity was observed on the three-arm caliper log, and horizontal stresses are presumed to be directionally uniform in the vicinity of this near-surface wellbore. This shallow wellbore has a temperature gradient of 1.87 ºF/100 ft (16.3 °C/km) and is likely influenced by Earth surface heating.


Lethaia ◽  
2021 ◽  
Author(s):  
Adriano Guido ◽  
Matteo Sposato ◽  
Giuseppe Palladino ◽  
Alessandro Vescogni ◽  
Domenico Miriello

2021 ◽  
Vol 91 (10) ◽  
pp. 1067-1092
Author(s):  
Regina F. Dunseith ◽  
Jay M. Gregg ◽  
G. Michael Grammer

ABSTRACT Dolomitized fault–fracture structures in the Trenton and Black River formations (TBR) are the type example for “hydrothermal” petroleum reservoirs world-wide. However, fluid histories of these structures are only partially understood. Trenton and Black River reservoirs in the southern Michigan Basin are composed of fault-associated, vertical dolomite bodies that are highly fractured and brecciated. Open spaces are partially to completely filled by saddle dolomite and less frequently by calcite cement. Cathodoluminescence microstratigraphies of void-filling carbonate cements are not correlatable between oil fields. Fluid inclusion homogenization temperatures (Th) measured in carbonate cements indicate two fluid endmembers: a warm fluid (∼ 80° to 180° C) and a hot fluid (180° to ∼ 260° C). Increasing Th proximal to the underlying Proterozoic Mid-Michigan Rift (MMR) suggest that the hot fluids emanated from the rift area. Included fluids are saline (16.1–49.4 wt. % NaCl equivalent), and salinity likely is sourced from overlying Silurian Salina Group evaporites. First melting temperatures (Tfm), interpreted as eutectic temperatures (Te), of fluids range from –112° C to –50° C, indicating a complex Na–Ca–KCl brine; the expected composition of dissolved Salina salts. Lower Te proximal to the MMR suggest the rift as a source of additional complexing ions. C and O isotope values for carbonate cements are depleted with respect to δ18O (–6.59 to –12.46‰ VPDB) relative to Ordovician seawaters, and somewhat depleted with respect to δ13C (–1.22 to +1.18‰ VPDB). Equilibrium calculations from δ18O and Th values indicate that cement precipitating waters were highly evolved (+1.3 to +14.4‰ δ18O‰ VSMOW) compared to Ordovician and Silurian seawaters (–5.5‰ δ18O‰ VSMOW). Strontium isotope values indicate two fluid sources: Proterozoic basement and Late Silurian evaporites. Values of 87Sr/86Sr for cements in the Freedom, Napoleon, Reading, and Scipio fields (0.7086–0.7088) are influenced by warm water sourced from Silurian strata, and values for cements in the Albion, Branch County, and Northville fields (0.7091–0.7110) record continental basement signatures. Cement precipitating fluids in TBR oil fields likely have similar sources and timing. However, water–rock interactions along fault pathways modified source waters, giving each oil field a unique petrographic and geochemical signature. Fluid movement in TBR oil fields likely were initiated by reactivation of basement faulting during Silurian–Devonian tectonism.


2021 ◽  
Author(s):  
ting ding ◽  
Luis A. González ◽  
Fu sheng Guo ◽  
Yang Xu

Abstract Carbonate concretions within tuffaceous mudstones in the Upper Cretaceous Cariblanco Formation of south-central Puerto Rico that contain solid and liquid hydrocarbons were affected by: 1) Three distinct events of vein/fracture formation accompanied or followed by sediment infilling; 2) pyrite formation throughout the concretion matrix, in foraminiferal chambers, and sediment vein fills; 3) four events of larger vein and fracture formation infilled by distinct calcite cements that postdate sediment infilled veins; 4) a late quartz void filling cement; and 5) formation of calcite-filled veinlets that crosscut all components. Petrographic and isotopic data suggest early concretion formation and septarian vein fills, close to the sediment-water interface, prior to any significant dewatering of infilling sediments. The δ13C values of the matrix and sediment infills (-15 to -30‰ PDB), their brightly luminescent character, and the sequestering of Fe into pyrite indicate formation in a sulfate-reducing environment with influx of diffusing methane. Fluid inclusion data, isotopic composition of carbonate cements (13C enrichments from − 18 to -8‰ and 18O depletion from − 4 to -12‰), and organic matter maturation suggest maximum burial temperatures of 150 to 200°C. Calcite cements and microspars were formed by the circulation of progressively warmer fluids, with warming induced by the gradual emplacement of the nearby Los Panes intrusion. The intrusion probably caused intense normal faulting, induced extensive warm fluid circulation, and resulted in a high geothermal gradient responsible for early hydrocarbon generation.


Sign in / Sign up

Export Citation Format

Share Document