Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland

Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.

Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


1994 ◽  
Vol 160 ◽  
pp. 64-67
Author(s):  
S Piasecki ◽  
F Surlyk ◽  
F Dalhoff ◽  
C.F Hansen ◽  
E.B Koppelhus ◽  
...  

A three-year research programme in Jameson Land was initiated in 1993 as part of ongoing studies of the post Caledonian sedimentary basins in East Greenland. The project is supported by the Danish Ministry of Energy and is carried out as a collaboration between the Geological Survey of Greenland (GGU) and Geological Institute, University of Copenhagen. The purpose of the project is to examine the relationships between fluctuations in relative sea-Ievel and the distribution of source- and reservoir rocks in the Upper Permian and Jurassic sedimentary succession in Jameson Land. The aim is to provide a framework for prediction of the hydrocarbon potential offshore East Greenland.


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


1980 ◽  
Vol 100 ◽  
pp. 108-108
Author(s):  
L Stemmerik ◽  
M Sørensen

During field work in the Upper Permian of Scoresby Land, a number of thin lamprophyric dykes were found in the area around Revdal (fig. 36). Direct fjeld evidence indicates a Late Permian age for at least some of these dykes. Such dykes are known to occur elsewhere in East Greenland (Haller, 1971, fig. 122), where some are thought to be of Devonian age (Haller, 1971).


Author(s):  
Michael Larsen ◽  
Stefan Piasecki ◽  
Thomas Preuss ◽  
Lars Seidler ◽  
Lars Stemmerik ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Larsen, M., Piasecki, S., Preuss, T., Seidler, L., Stemmerik, L., Therkelsen, J., & Vosgerau, H. (1998). Petroleum geological activities in East Greenland in 1997. Geology of Greenland Survey Bulletin, 180, 35-42. https://doi.org/10.34194/ggub.v180.5084 _______________ In 1997, petroleum geological activities were continued in East Greenland in order to increase existing knowledge on the sedimentology and biostratigraphy of the Upper Permian – Mesozoic succession, and to better define and describe the petroleum systems of the basin. The activities form part of the multidisciplinary research project ‘Resources of the sedimentary basins of North and East Greenland’ initiated in 1995 with financial support from the Danish Research Councils, and were mostly continuations of pre- and post-doctoral research (Stemmerik et al. 1996, 1997). Some new activities were initiated during the 1997 season with financial support from Saga Petroleum a.s.a., Norway; they included an evaluation of the thermal effects and diagenetic changes resulting from Paleogene intrusions and a more detailed sedimentological study of the newly identified Jurassic succession of northern Hold with Hope (Stemmerik et al. 1997). Five teams worked in the region in July and August 1997 studying the Upper Permian – Lower Triassic of Wegener Halvø, northern Scoresby Land and Traill Ø, the Middle Jurassic – Lower Cretaceous of Hold with Hope and the Cretaceous of Traill Ø and Geographical Society Ø (Fig. 1). The work was logistically integrated with the Survey’s other mapping activities in the region (see Henriksen 1998, this volume).


1990 ◽  
Vol 148 ◽  
pp. 105-108
Author(s):  
L Stemmerik ◽  
P.A Scholle ◽  
F.H Henk ◽  
G Di Liegro ◽  
M Mantovani ◽  
...  

The depositional pattern of the Upper Permian Wegener Halvø Formation is mainly controlled by the karst topography of the surface of the underlying Karstryggen Formation. The area was divided by a NNW–SSE trending depositional and/or erosional high during Late Permian times. Peritidal carbonates and evaporites are dominant on the platform to the west while to the east oolite and biogene grainstone deposits dominate. Reservoir-quality properties are mainly confined to the grainstone deposits east of the high.


Author(s):  
Lars Stemmerik ◽  
Ole R. Clausen ◽  
John Korstgård ◽  
Michael Larsen ◽  
Stefan Piasecki ◽  
...  

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Clausen, O. R., Korstgård, J., Larsen, M., Piasecki, S., Seidler, L., Surlyk, F., & Therkelsen, J. (1997). Petroleum geological investigations in East Greenland: project ‘Resources of the sedimentary basins of North and East Greenland’. Geology of Greenland Survey Bulletin, 176, 29-38. https://doi.org/10.34194/ggub.v176.5058 _______________ The multidisciplinary research project ‘Resources of the sedimentary basins of North and East Greenland’ was initiated in 1995 with financial support from the Danish Research Councils (Stemmerik et al., 1996). In 1996, the hydrocarbon-related studies focused on the sedimentary basins in East Greenland between latitudes 71°N and 74°N (Fig. 1) where nine field teams worked for six weeks in July and August supported by a Hughes 500 helicopter. Within the framework of the project, additional hydrocarbon-related field studies were undertaken in 1996 in western North Greenland, and ore-geological studies were carried out in much of North Greenland (Kragh et al., 1997; Stemmerik et al., 1997). The 1996 field work in East Greenland concentrated on integrated structural, sedimentological and biostratigraphical studies of the Upper Permian and Mesozoic successions. Two Ph.D. projects focused on the sedimentology of the Lower Triassic Wordie Creek Formation and the diagenesis of the Middle and Upper Jurassic succession. Post-doctorate studies were carried out on the Mesozoic–Tertiary structural development of the basin and the mineralisation of the Upper Permian Ravnefjeld Formation. Three student projects on Lower Triassic and Middle Jurassic ammonite stratigraphy, Upper Permian sedimentology, and fault-associated mineralisation were also included in the work. The most important new results arising from the 1996 field work are: 1) Re-interpretation of the Upper Permian Schuchert Dal Formation as a lowstand turbidite unit within the Ravnefjeld Formation; 2) Recognition of Middle Jurassic deposits and thick lowermost Cretaceous sandstones on Hold with Hope; 3) Interpretation of a full spectrum of scarp-derived coarse-clastic mass movement deposits interbedded with Cretaceous shales on eastern Traill Ø; 4) The presence of a thick sand-rich Cretaceous turbidite succession on eastern Traill Ø; 5) Re-interpretation of the Mesozoic–Cenozoic fault systems on Traill Ø and Geographical Society Ø.


1991 ◽  
Vol 152 ◽  
pp. 24-29
Author(s):  
N Henriksen

The third and last season of the North-East Greenland project between latitudes 75° and 78°N was completed in July and August 1990. The main aims of the studies in North-East Greenland include compilation of a 1:500 000 geological map sheet covering the area between Grandjean Fjord (75°N) and Jökelbugten (78°N), and regional geological investigations to provide an understanding of the general geology of the region. A preliminary evaluation of the potential for hydrocarbons and mineral resources was included in the project, and took the form of investigations of the onshore remnants of Phanerozoic sedimentary basins (Stemmerik & Piasecki, 1990) and a geochemical exploration reconnaissance.


2021 ◽  
Author(s):  
Barbara Namysłowska-Wilczyńska

<p>This geostatistical study investigates the variation in the basic geological parameters of the lithologically varied deposit in mining block R-1 in the west (W) part of the Rudna Mine (the region Lubin – Sieroszowice, SW part of Poland).</p><p>Data obtained from the sampling (sample size N = 708) of excavations in block R-1 were the input for the spatial analyses. The data are the results of chemical analyses of the Cu content in the (recoverable) deposit series, carried out on channel samples and drilled core samples, taken systematically at every 15-20 m in the headings.</p><p>The deposit profile comprises various rock formations, such as: mineralized Weissliegend sandstones, intensively mineralized upper Permian dolomitic-loamy and loamy copper-bearing schists and carbonate rocks: loamy dolomite, striped dolomite and limy dolomite, of various thickness. No schists formed in some parts of block R-1, which are referred to as the schistless area. The deposit series here is considerably less mineralized (comparing with other mining blocks) even though the mineralization thickness of the sandstone and carbonate rocks reaches as much as 20 m.</p><p>The variation in the Cu content and thickness of the recoverable deposit and the estimated averages Z* of the above parameters were modelled using the variogram function and the ordinary (block) kriging technique. The efficiency of the estimations was characterized.</p><p>As part of the further spatial analyses the Z<sub>s</sub> values of the analysed deposit parameters were simulated using the conditional turning bands simulation. Confidence intervals for the values of averages based on the estimated averages Z* and averages <strong> </strong>based on the simulated values (realizations) Z<sub>s</sub>, showing the uncertainty of the estimations and simulations, were calculated.</p><p>The results of the analyses clearly indicate the shifting of the mineralized zone (the mineralizing solutions), sometimes into the sandstones while spreading throughout the floor of calcareous-dolomitic formations and sometimes into the carbonate rocks, partly entering the roof layers of sandstones. It can be concluded that the process of deposit formation and copper mineralization variation had a multiphase character and the lateral and vertical relocation of the valuable metal ores could play a significant role.</p><p>The combination of various geostatistical techniques - estimation and simulation - will allow for more effective management of natural resources of mineral resources, including copper ore deposits.</p>


Sign in / Sign up

Export Citation Format

Share Document