Recovery of Near-Surface Cracked Areas by 3D Seismic Data

Author(s):  
V.A. Pozdniakov
Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. KS173-KS182 ◽  
Author(s):  
Andrew Poulin ◽  
Ron Weir ◽  
David Eaton ◽  
Nadine Igonin ◽  
Yukuan Chen ◽  
...  

Focal-time analysis is a straightforward data-driven method to obtain robust stratigraphic depth control for microseismicity or induced seismic events. The method eliminates the necessity to build an explicit, calibrated velocity model for hypocenter depth estimation, although it requires multicomponent 3D seismic data that are colocated with surface or near-surface microseismic observations. Event focal depths are initially expressed in terms of zero-offset focal time (two-way P-P reflection time) to facilitate registration and visualization with 3D seismic data. Application of the focal-time method requires (1) high-quality P- and S-wave time picks, which are extrapolated to zero offset and (2) registration of correlative P-P and P-S reflections to provide [Formula: see text] and [Formula: see text] time-depth control. We determine the utility of this method by applying it to a microseismic and induced-seismicity data set recorded with a shallow-borehole monitoring array in Alberta, Canada, combined with high-quality multicomponent surface seismic data. The calculated depth distribution of events is in good agreement with hypocenter locations obtained independently using a nonlinear global-search method. Our results reveal that individual event clusters have distinct depth distributions that can provide important clues about the mechanisms of fault activation.


2012 ◽  
Vol 2012 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Peter Kovesi ◽  
Ben Richardson ◽  
Eun-Jung Holden ◽  
Jeffrey Shragge

Sign in / Sign up

Export Citation Format

Share Document