Marked Point Models with Complex Conditioning used for Modelling of Shales

Author(s):  
Anne Randi Syversveen ◽  
Henning Omre
Keyword(s):  
2020 ◽  
Vol 2020 (14) ◽  
pp. 305-1-305-6
Author(s):  
Tianyu Li ◽  
Camilo G. Aguilar ◽  
Ronald F. Agyei ◽  
Imad A. Hanhan ◽  
Michael D. Sangid ◽  
...  

In this paper, we extend our previous 2D connected-tube marked point process (MPP) model to a 3D connected-tube MPP model for fiber detection. In the 3D case, a tube is represented by a cylinder model with two spherical areas at its ends. The spherical area is used to define connection priors that encourage connection of tubes that belong to the same fiber. Since each long fiber can be fitted by a series of connected short tubes, the proposed model is capable of detecting curved long tubes. We present experimental results on fiber-reinforced composite material images to show the performance of our method.


1996 ◽  
Vol 33 (01) ◽  
pp. 57-70
Author(s):  
Bartłomiej Błaszczyszyn ◽  
Tomasz Rolski

Let N be a stationary Markov-modulated marked point process on ℝ with intensity β ∗ and consider a real-valued functional ψ(N). In this paper we study expansions of the form Eψ(N) = a 0 + β ∗ a 1 + ·· ·+ (β∗ ) nan + o((β ∗) n ) for β ∗→ 0. Formulas for the coefficients ai are derived in terms of factorial moment measures of N. We compute a 1 and a 2 for the probability of ruin φ u with initial capital u for the risk process in the Markov-modulated environment; a 0 = 0. Moreover, we give a sufficient condition for ϕu to be an analytic function of β ∗. We allow the premium rate function p(x) to depend on the actual risk reserve.


1993 ◽  
Vol 30 (02) ◽  
pp. 365-372 ◽  
Author(s):  
Søren Asmussen ◽  
Ger Koole

A Markovian arrival stream is a marked point process generated by the state transitions of a given Markovian environmental process and Poisson arrival rates depending on the environment. It is shown that to a given marked point process there is a sequence of such Markovian arrival streams with the property that as m →∞. Various related corollaries (involving stationarity, convergence of moments and ergodicity) and counterexamples are discussed as well.


2015 ◽  
Vol 47 (03) ◽  
pp. 761-786 ◽  
Author(s):  
Jose Blanchet ◽  
Jing Dong

We present the first class of perfect sampling (also known as exact simulation) algorithms for the steady-state distribution of non-Markovian loss systems. We use a variation of dominated coupling from the past. We first simulate a stationary infinite server system backwards in time and analyze the running time in heavy traffic. In particular, we are able to simulate stationary renewal marked point processes in unbounded regions. We then use the infinite server system as an upper bound process to simulate the loss system. The running time analysis of our perfect sampling algorithm for loss systems is performed in the quality-driven (QD) and the quality-and-efficiency-driven regimes. In both cases, we show that our algorithm achieves subexponential complexity as both the number of servers and the arrival rate increase. Moreover, in the QD regime, our algorithm achieves a nearly optimal rate of complexity.


2012 ◽  
Vol 44 (3) ◽  
pp. 603-616 ◽  
Author(s):  
F. Ballani ◽  
Z. Kabluchko ◽  
M. Schlather

We aim to link random fields and marked point processes, and, therefore, introduce a new class of stochastic processes which are defined on a random set in . Unlike for random fields, the mark covariance function of a random marked set is in general not positive definite. This implies that in many situations the use of simple geostatistical methods appears to be questionable. Surprisingly, for a special class of processes based on Gaussian random fields, we do have positive definiteness for the corresponding mark covariance function and mark correlation function.


Sign in / Sign up

Export Citation Format

Share Document