scholarly journals Marmousi-model data set: macro model verification and prestack depth migration

Author(s):  
R. Marschall ◽  
J. Thiessen
2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


1998 ◽  
Vol 17 (5) ◽  
pp. 635-638
Author(s):  
Wen‐Jing Wu ◽  
Larry Lines ◽  
Andrew Burton ◽  
Han‐Xing Lu ◽  
Jinming Zhu ◽  
...  

Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 392-398 ◽  
Author(s):  
W.-J. Wu ◽  
L. Lines ◽  
A. Burton ◽  
H.-X. Lu ◽  
J. Zhu ◽  
...  

We produce depth images for an Alberta Foothills line by iteratively using a number of migration and velocity analysis techniques. In imaging steeply dipping layers of a foothills data set, it is apparent that thrust belt geology can violate the conventional assumptions of elevation datum corrections and common midpoint (CMP) stacking. To circumvent these problems, we use migration from topography in which we perform prestack depth migration on the data using correct source and receiver elevations. Migration from topography produces enhanced images of steep shallow reflectors when compared to conventional processing. In addition to migration from topography, we couple prestack depth migration with the continuous adjustment of velocity depth models. A number of criteria are used in doing this. These criteria require that our velocity estimates produce a focused image and that migrated depths in common image gathers be independent of source‐receiver offset. Velocity models are estimated by a series of iterative and interpretive steps involving prestack migration velocity analysis and structural interpretation. Overlays of velocity models on depth migrations should generally show consistency between velocity boundaries and reflection depths. Our preferred seismic depth section has been produced by using prestack reverse‐time depth migration coupled with careful geological interpretation.


1996 ◽  
Author(s):  
Xiuyuan Li ◽  
Daniel A. Ebrom ◽  
K. K. Sekharan ◽  
John McDonald

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE13-VE23 ◽  
Author(s):  
Frank Adler ◽  
Reda Baina ◽  
Mohamed Amine Soudani ◽  
Pierre Cardon ◽  
Jean-Baptiste Richard

Velocity-model estimation with seismic reflection tomography is a nonlinear inverse problem. We present a new method for solving the nonlinear tomographic inverse problem using 3D prestack-depth-migrated reflections as the input data, i.e., our method requires that prestack depth migration (PSDM) be performed before tomography. The method is applicable to any type of seismic data acquisition that permits seismic imaging with Kirchhoff PSDM. A fundamental concept of the method is that we dissociate the possibly incorrect initial migration velocity model from the tomographic velocity model. We take the initial migration velocity model and the residual moveout in the associated PSDM common-image gathers as the reference data. This allows us to consider the migrated depth of the initial PSDM as the invariant observation for the tomographic inverse problem. We can therefore formulate the inverse problem within the general framework of inverse theory as a nonlinear least-squares data fitting between observed and modeled migrated depth. The modeled migrated depth is calculated by ray tracing in the tomographic model, followed by a finite-offset map migration in the initial migration model. The inverse problem is solved iteratively with a Gauss-Newton algorithm. We applied the method to a North Sea data set to build an anisotropic layer velocity model.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. B87-B96 ◽  
Author(s):  
Ammanuel Fesseha Woldearegay ◽  
Priyank Jaiswal ◽  
Alexander R. Simms ◽  
Hanna Alexander ◽  
Leland C. Bement ◽  
...  

Depth imaging in ultrashallow ([Formula: see text]) environments presents twofold challenge: (1) coda available for depth migration is very limited; and (2) conventional time processing with limited coda generally fails to estimate reliable velocity models for depth migration. We studied the combining of first-arrival traveltime inversion and prestack depth migration (PSDM) for depth imaging of ultrashallow paleochannel stratigraphy associated with the Bull Creek drainage system, Oklahoma. Restricted by a limited number of geophones (24) we acquired data for inversion and migration through two coincident profiles. The first profile for inversion has a wider survey-aperture (115-m maximum shot-receiver spacing) and consequently sparse CMP spacing (2.5 m), whereas the second profile for PSDM has denser CMP spacing (1 m) and consequently a narrower survey aperture (46-m maximum shot-receiver spacing). We also found that the velocity model from traveltime inversion of the wider-aperture data set is more preferable for depth-migration than the velocity model from time processing of the denser data set. The preferred depth image showed three episodes of incision whose chronological order is resolved through radio-carbon dating of terrace sediments. Results suggested that even with limited geophones, depth imaging of ultrashallow targets can be achieved by combining first-arrival traveltime inversion and PSDM through coincident wide- and narrow-aperture acquisitions.


Geophysics ◽  
1993 ◽  
Vol 58 (6) ◽  
pp. 873-882 ◽  
Author(s):  
Roelof Jan Versteeg

To get a correct earth image from seismic data acquired over complex structures it is essential to use prestack depth migration. A necessary condition for obtaining a correct image is that the prestack depth migration is done with an accurate velocity model. In cases where we need to use prestack depth migration determination of such a model using conventional methods does not give satisfactory results. Thus, new iterative methods for velocity model determination have been developed. The convergence of these methods can be accelerated by defining constraints on the model in such a way that the method only looks for those components of the true earth velocity field that influence the migrated image. In order to determine these components, the sensitivity of the prestack depth migration result to the velocity model is examined using a complex synthetic data set (the Marmousi data set) for which the exact model is known. The images obtained with increasingly smoothed versions of the true model are compared, and it is shown that the minimal spatial wavelength that needs to be in the model to obtain an accurate depth image from the data set is of the order of 200 m. The model space that has to be examined to find an accurate velocity model from complex seismic data can thus be constrained. This will increase the speed and probability of convergence of iterative velocity model determination methods.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1903-1912 ◽  
Author(s):  
Igor B. Morozov ◽  
Alan Levander

Wide‐aperture, prestack depth migration requires application of challenging and time‐consuming velocity analysis and depth focusing, collectively referred to here as depth focusing. We present an approach to depth focusing using (1) a detailed starting velocity model obtained by a 1‐D transformation of the first‐arrival times, followed iteratively by (2) interactive analysis of the common‐image gathers, (3) computation of coherency attributes of the wavefield in the depth domain, and (4) 2‐D traveltime tomography to update the background velocity model. We employ two interactive method of migration velocities refinement. In the first method (similar to the common‐midpoint velocity spectrum approach), residual velocity updates are picked directly from the common‐image gathers. In another method (analogous to the common velocity stacks), we pick the velocity updates from the areas of maximum coherency in depth sections that are migrated using rescaled traveltime maps. Both types of migration velocity picks, optionally combined with the first arrivals, are inputs for a 2‐D traveltime inversion scheme that uses either the infinite‐frequency or a finite‐bandwidth approximation. This flexible and versatile depth focusing approach is implemented for several prestack depth migration algorithms and illustrated on an application to a real, ultrashallow seismic data set. The technique resolves overburden velocity variations and facilitates reliable high‐resolution reflection imaging of a paleochannel that was the target of the study.


Sign in / Sign up

Export Citation Format

Share Document