difference grid
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5248
Author(s):  
Roie Dann ◽  
Guy Elbaz ◽  
Jonathan Berkheim ◽  
Alan Muhafra ◽  
Omri Nitecki ◽  
...  

We demonstrate that the finite difference grid method (FDM) can be simply modified to satisfy the variational principle and enable calculations of both real and complex poles of the scattering matrix. These complex poles are known as resonances and provide the energies and inverse lifetimes of the system under study (e.g., molecules) in metastable states. This approach allows incorporating finite grid methods in the study of resonance phenomena in chemistry. Possible applications include the calculation of electronic autoionization resonances which occur when ionization takes place as the bond lengths of the molecule are varied. Alternatively, the method can be applied to calculate nuclear predissociation resonances which are associated with activated complexes with finite lifetimes.


2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4080
Author(s):  
Jakub Matoušek ◽  
Jindřich Duník ◽  
Ondřej Straka

The paper deals with the Bayesian state estimation of nonlinear stochastic dynamic systems. The stress is laid on the point-mass filter, solving the Bayesian recursive relations for the state estimate conditional density computation using the deterministic grid-based numerical integration method. In particular, the grid design is discussed and the novel density difference grid is proposed. The proposed grid design covers such regions of the state-space where the conditional density is significantly spatially varying, by the dense grid. In other regions, a sparse grid is used to keep the computational complexity low. The proposed grid design is thoroughly discussed, analyzed, and illustrated in a numerical study.


2016 ◽  
Vol 23 (6) ◽  
pp. 1305-1314 ◽  
Author(s):  
S. Kshevetskii ◽  
P. Wojda ◽  
V. Maximov

The propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens system. The reasons for using a very detailed difference grid are investigated. It was shown that the wave phase becomes a function, very quickly increasing with increasing distance from the optical axis, after the wave has passed through the multi-lens system. If the phase is a quickly increasing function of the coordinates perpendicular to the optical axis, then the electric field of the wave is a quickly oscillating function of these coordinates, and thus a very detailed difference grid becomes necessary to describe such a wavefield. To avoid this difficulty, an equation for the phase function is proposed as an alternative to the equation of the electric field. This allows reliable and accurate simulations to be carried out when using the multi-lens system. An equation for the phase function is derived and used for accurate simulations. The numerical error of the suggested method is estimated. It is shown that the equation for the phase function allows efficient simulations to be fulfilled for the multi-lens system.


Sign in / Sign up

Export Citation Format

Share Document