Coupled 2D and 3D Numerical Simulations to Quantify Regional-scale Observations of Heat and Salt Distributions Around the Lake Tiberias, Israel

Author(s):  
F. Magri ◽  
S. Moller ◽  
N. Inbar ◽  
C. Siebert ◽  
P. Moller ◽  
...  
Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Luca Schilirò ◽  
José Cepeda ◽  
Graziella Devoli ◽  
Luca Piciullo

In Norway, shallow landslides are generally triggered by intense rainfall and/or snowmelt events. However, the interaction of hydrometeorological processes (e.g., precipitation and snowmelt) acting at different time scales, and the local variations of the terrain conditions (e.g., thickness of the surficial cover) are complex and often unknown. With the aim of better defining the triggering conditions of shallow landslides at a regional scale we used the physically based model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope stability) in an area located in upper Gudbrandsdalen valley in South-Eastern Norway. We performed numerical simulations to reconstruct two scenarios that triggered many landslides in the study area on 10 June 2011 and 22 May 2013. A large part of the work was dedicated to the parameterization of the numerical model. The initial soil-hydraulic conditions and the spatial variation of the surficial cover thickness have been evaluated applying different methods. To fully evaluate the accuracy of the model, ROC (Receiver Operating Characteristic) curves have been obtained comparing the safety factor maps with the source areas in the two periods of analysis. The results of the numerical simulations show the high susceptibility of the study area to the occurrence of shallow landslides and emphasize the importance of a proper model calibration for improving the reliability.


2001 ◽  
Vol 32 ◽  
pp. 121-122
Author(s):  
N. RIEMER ◽  
H. VOGEL ◽  
B. VOGEL ◽  
F. FIEDLER

Author(s):  
Qingqu Zhuang ◽  
Shuying Zhai ◽  
Zhifeng Weng

In this paper, based on the Lagrange Multiplier approach in time and the Fourier-spectral scheme for space, we propose efficient numerical algorithms to solve the phase field crystal equation. The numerical schemes are unconditionally energy stable based on the original energy and do not need the lower bound hypothesis of the nonlinear free energy potential. The unconditional energy stability of the three semi-discrete schemes is proven. Several numerical simulations in 2D and 3D are demonstrated to verify the accuracy and efficiency of our proposed schemes.


2004 ◽  
Vol 13 (3-4) ◽  
pp. 269-288 ◽  
Author(s):  
Lionel Depradeux ◽  
Jean-François Jullien

2012 ◽  
Vol 84 ◽  
pp. 57-58
Author(s):  
Kai Schneider ◽  
Dmitry Kolomenskiy ◽  
Thomas Engels ◽  
Keith Moffatt ◽  
Marie Farge

The Lighthill-Weis-Fogh clap-fling-sweep mechanism is a movement used by some insects to improve their flight performance. As first suggested by Lighthill (1973), this mechanism allows large circulations around the wings to be established immediately as they start to move. Initially, the wings are clapped. Then they fling open like a book, and a non-zero circulation is established around each of them. Thus one wing can be considered as the starting vortex for the other. Then they sweep apart, carrying these bound vortices and generating lift. Since the insect wings have relatively low aspect ratio and rotate, 3d effects are important, such as spanwise flow and stabilization of the leading edge vortices (Maxworthy, 2007). To explore these effects, we perform direct numerical simulations of flapping wings, using a pseudo-spectral method with volume penalization. Comparing 2d and 3d simulations for the same setup clarifies the role of the three-dimensionality of the wake. Our results show that the 2d approximation describes very well the flow during fling, when the wings are near, but 3d effects become crucial when the wings move far apart. Possible extensions of the numerical method for modeling the interaction with thin elastic wings using FSI will also be presented.


Author(s):  
Zixi Chen ◽  
Shamini Parameswaran ◽  
Yingying Hu ◽  
Zhaoming He ◽  
Rishi Raj ◽  
...  

Author(s):  
Yosuke Matsukuma ◽  
Gen Inoue ◽  
Masake Minemoto

This paper demonstrates numerical simulations of droplet on gas diffusion layer of the polymer electrolyte fuel cell. The lattice Boltzmann method for incompressible two-phase flows at high density ratios were applied for the simulations in order to precisely predict the shape and moving velocity of water droplet surrounding by the air in the gas channel. Simulations were conducted in 2D and 3D and height and moving velocity of droplet were compared with experiment as a function of mean gas velocity in the gas channel. The droplet heights by the simulations were qualitatively agreed with the experimental data, while the simulation results of moving speed of droplet somewhat overestimated the experimental results.


Sign in / Sign up

Export Citation Format

Share Document