scholarly journals Geochemical Characterization and Volumetric Assessment of the Prolific Mesozoic Source Rocks of the Northeastern Arabian Plate

Author(s):  
A. Aqrawi ◽  
B. Badics
GeoArabia ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 99-140
Author(s):  
Adnan A.M. Aqrawi ◽  
Balazs Badics

ABSTRACT The Middle Jurassic–Lower Cretaceous strata of the NE Arabian Plate contain several prolific source rocks providing the charge to some of the largest world-class petroleum systems. They are located within the Zagros Fold Belt and Mesopotamian Foreland Basins covering the northern, central and southeastern parts of Iraq, Kuwait and western and southwestern Iran, particularly the Lurestan and Khuzestan provinces. These source rocks include the Bajocian–Bathonian Sargelu, the Callovian–Lower Kimmeridgian Naokelekan and the Upper Tithonian–Lower Berriasian Chia Gara formations of Iraq and their chronostratigraphic equivalents in Kuwait and Iran. They have charged the main Cretaceous and Cenozoic (Tertiary) reservoirs throughout Iraq, Kuwait and Iran with more than 250 billion barrels of proven recoverable hydrocarbons. These formations represent the transgressive system tracts of sequences deposited within deep basinal settings and anoxic environments. They are dominated by black shales and bituminous marly limestones, with high total organic carbon (TOC) contents (ranging from 1–18 wt%), and by marine Type IIS kerogen. Their Rock-Eval S2 yields may reach up to 60 mg HC/g Rock, particularly along the depocentre of the Mesopotamian Foreland Basin. The immature hydrogen index (HI) values might have been up to 700 mg HC/g TOC, whereas the present-day observed values vary depending on the location within the basin and the present-day maturity. The Source-Potential Index (SPI; i.e. mass of hydrocarbons in tons, which could be generated from an area of 1 sq m in case of 100% transformation ratio) averages around 2–3, but can even reach up to 14–16 along the basins’ centres. The Sargelu and the overlying Naokelekan-basinal Najmah formations (and their equivalents) could represent the best potential shale-gas/shale-oil plays in Iraq, Kuwait and Iran, due to their organic richness, favourable maturity and the presence of regional upper and lower seals. The estimated oil-in-place for the potential Sargelu shale-oil play in Iraq only is around 1,300–2,500 billion barrel oil-equivalent (BBOE) and in Kuwait is about 7–150 BBOE.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


2020 ◽  
Vol 123 (4) ◽  
pp. 587-596
Author(s):  
A. Emanuel ◽  
C.H. Kasanzu ◽  
M. Kagya

Abstract Triassic to mid-Jurassic core samples of the Mandawa basin, southern Tanzania (western coast of the Indian Ocean), were geochemically analyzed in order to constrain source rock potentials and petroleum generation prospects of different stratigraphic formations within the coastal basin complex. The samples were collected from the Mihambia, Mbuo and Nondwa Formations in the basin. Geochemical characterization of source rocks intersected in exploration wells drilled between 503 to 4042 m below surface yielded highly variable organic matter contents (TOC) rated between fair and very good potential source rocks (0.5 to 8.7 wt%; mean ca. 2.3 wt%). Based on bulk geochemical data obtained in this study, the Mandawa source rocks are mainly Type I, Type II, Type III, mixed Types II/III and Type IV kerogens, with a predominance of Type II, Type III and mixed Type II/III. Based on pyrolysis data (Tmax 417 to 473oC; PI = 0.02 to 0.47; highly variable HI = 13 to 1 000 mg/gTOC; OI = 16 to 225 mg/g; and VR values of between 0.24 to 0.95% Ro) we suggest that the Triassic Mbuo Formation and possibly the mid-Jurassic Mihambia Formation have a higher potential for hydrocarbon generation than the Nondwa Formation as they are relatively thermally mature.


2015 ◽  
Vol 21 (4) ◽  
pp. 301-321 ◽  
Author(s):  
Paul Farrimond ◽  
Bodapati S. Naidu ◽  
Stuart D. Burley ◽  
John Dolson ◽  
Nicholas Whiteley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document