The Use of Hydraulic Flow Units and Neural Networks to Improve Rock Types Estimation and Reservoir Models: A Case Study

Author(s):  
Ana de Sousa ◽  
P. Bizarro ◽  
M.T. Ribeiro
2018 ◽  
Vol 27 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Mohamad Iravani ◽  
Mahdi Rastegarnia ◽  
Dariush Javani ◽  
Ali Sanati ◽  
Seyed Hasan Hajiabadi

2019 ◽  
Vol 9 (4) ◽  
pp. 4397-4404
Author(s):  
A. Sokhal ◽  
Z. Benaissa ◽  
S. A. Ouadfeul ◽  
A. Boudella

A new multidisciplinary workflow is suggested to re-characterize the Hamra Quartzite (QH) formation using artificial neural networks. This approach involves core description, routine core analysis, special core analysis and raw logs of fourteen wells. An efficient electrofacies clustering neural network technology based on a self-organizing map is performed. The inputs in the model computation are: neutron porosity, gamma ray and bulk density logs. According to the self-organizing map results, the reservoir is composed of five electrofacies (EF1 to EF5): EF1, EF2 and EF3 with good reservoir quality, EF4 with moderate quality, and EF5 with bad quality. Hydraulic flow units are determined from well logs and core data using the flow zone indicator (FZI) approach and the multilayer perception (MLP) method. Obtained results indicate eight optimal hydraulic flow units. Hydraulic flow units for un-cored well are determined using the MLP, the used inputs to train the neural system are: neutron porosity, gamma ray, bulk density and predefined electrofacies. A dynamic rock typing is achieved using the FZI approach and combining special core data analysis to better characterize the hydraulic reservoir behavior. A best-fit relationship between water saturation and J-function is established and a good saturation match is obtained between capillary pressure and interpreted log results.


Author(s):  
Abdel Moktader A. El-Sayed ◽  
Nahla A. El Sayed ◽  
Hadeer A. Ali ◽  
Mohamed A. Kassab ◽  
Salah M. Abdel-Wahab ◽  
...  

AbstractThe present work describes and evaluates the reservoir quality of the sandstone of the Nubia Formation at the Gebel Abu Hasswa outcrop in southwest Sinai, Egypt. Hydraulic flow unit (HFU) and electrical flow unit (EFU) concepts are implied to achieve this purpose. The Paleozoic section made up of four formations has been studied. The oldest is Araba Formation followed by Naqus formations (Nubia C and D) overlay by Abu Durba, Ahemir and Qiseib formations (Nubia B), where the Lower Cretaceous (Nubia A) is represented by the Malha Formation. The studied samples have been collected from Araba, Abu Durba, Ahemir and the Malha formations. The hydraulic flow unit (HFU) discrimination was carried out based on permeability and porosity relationship, whereas the electrical flow unit (EFU) differentiation was carried out based on the relationship between formation resistivity factor and porosity. Petrographic investigation of the studied thin sections illustrates that the studied samples are mainly quartz arenite. Important roles to enhance or reduce the pore size and/or pore throats controlling the reservoir petrophysical behavior are due to the diagenetic processes. The present study used the reservoir quality index (RQI) and Winland R35 as additional parameters applied to discriminate the HFUs. The study samples have five hydraulic flow units of different rock types, where the detected electrical flow units are only three. The differences between them are may be due to the cementation process with iron oxides that might act as pore filling, lining and pore bridging, sometimes bridges helping to decrease permeability without serious reduction in porosity. The reduction between the number of EFUs and HFUs comes from the effect of diagenesis processes which is responsible for a precipitation of different cement types such as different clay minerals and iron oxides.


Sign in / Sign up

Export Citation Format

Share Document