Modeling Of Stimulated Reservoir Volume By Multistage Hydraulic Fracturing In Formation With Pre-Existing Natural Fractu

Author(s):  
A. Erofeev ◽  
V. Vostrikova ◽  
R. Sitdikov ◽  
R. Nikitin ◽  
D. Mitrushkin ◽  
...  
SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 784-789 ◽  
Author(s):  
Avi Lin ◽  
Jianfu Ma

Summary This paper presents a mathematical integration process through which all the important useful information and data related to stimulated rock are properly extracted and embedded so that the total effects of the hydraulic-fracturing stimulation are properly presented by the microseismic data detected and collected during the hydraulic-fracturing process. A multistage hydraulic-fracturing strategy is often used to help maximize the stimulated reservoir volume (SRV). The current analysis is based on chaining the stage results one-by-one. At each stage, the 3D SRV is constructed on the basis of its observed microseismic events with an enhanced convex-hull approach. This algorithm offers both a mathematical approximation of 3D volume and a 3D visualization of the SRV geophysical shape(s). More-detailed geometric characteristics are calculated further from the ellipsoid that best fits the constructed SRV, which relies on the acquired microseismic events. The characteristics include length, width, height, and orientation azimuth of the stimulated rock. Moreover, it forms the basis for calculating the overall SRV with the stage-by-stage approach. In the advanced phase, this algorithm offers characteristics related to the interaction between multiple stages. The accurate 3D geophysical geometry of the overlapping volume between multiple stages is extracted and is calculated, and the percentage of overlapping volume over the SRV is estimated at each stage. These volume-overlapping quantities reveal the potential communication between these stages, indicating the efficiency of hydraulic-fracturing efforts and implying the loss of treatment fluid. This algorithm provides the field engineers with several useful aspects: an essential, reliable, and direct compound tool to dynamically visualize the stimulated reservoir geometry and treatment-field evolution; a real-time evaluation of the efficiency of a hydraulic-fracturing treatment; and parameters to help increase the production of a stimulated reservoir.


2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740007 ◽  
Author(s):  
GUANGLONG SHENG ◽  
YULIANG SU ◽  
WENDONG WANG ◽  
FARZAM JAVADPOUR ◽  
MEIRONG TANG

According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length ([Formula: see text]), deviation angle ([Formula: see text]), iteration times ([Formula: see text]) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.


Sign in / Sign up

Export Citation Format

Share Document