History Matching Channelized Facies Models Using Ensemble Smoother With A Deep Learning Parameterization

Author(s):  
S.W.A Canchumuni ◽  
A.A Emerick ◽  
M.A.C Pacheco
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3137
Author(s):  
Amine Tadjer ◽  
Reider B. Bratvold ◽  
Remus G. Hanea

Production forecasting is the basis for decision making in the oil and gas industry, and can be quite challenging, especially in terms of complex geological modeling of the subsurface. To help solve this problem, assisted history matching built on ensemble-based analysis such as the ensemble smoother and ensemble Kalman filter is useful in estimating models that preserve geological realism and have predictive capabilities. These methods tend, however, to be computationally demanding, as they require a large ensemble size for stable convergence. In this paper, we propose a novel method of uncertainty quantification and reservoir model calibration with much-reduced computation time. This approach is based on a sequential combination of nonlinear dimensionality reduction techniques: t-distributed stochastic neighbor embedding or the Gaussian process latent variable model and clustering K-means, along with the data assimilation method ensemble smoother with multiple data assimilation. The cluster analysis with t-distributed stochastic neighbor embedding and Gaussian process latent variable model is used to reduce the number of initial geostatistical realizations and select a set of optimal reservoir models that have similar production performance to the reference model. We then apply ensemble smoother with multiple data assimilation for providing reliable assimilation results. Experimental results based on the Brugge field case data verify the efficiency of the proposed approach.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Sungil Kim ◽  
Baehyun Min ◽  
Kyungbook Lee ◽  
Hoonyoung Jeong

This study couples an iterative sparse coding in a transformed space with an ensemble smoother with multiple data assimilation (ES-MDA) for providing a set of geologically plausible models that preserve the non-Gaussian distribution of lithofacies in a channelized reservoir. Discrete cosine transform (DCT) of sand-shale facies is followed by the repetition of K-singular value decomposition (K-SVD) in order to construct sparse geologic dictionaries that archive geologic features of the channelized reservoir such as pattern and continuity. Integration of ES-MDA, DCT, and K-SVD is conducted in a complementary way as the initially static dictionaries are updated with dynamic data in each assimilation of ES-MDA. This update of dictionaries allows the coupled algorithm to yield an ensemble well conditioned to static and dynamic data at affordable computational costs. Applications of the proposed algorithm to history matching of two channelized gas reservoirs show that the hybridization of DCT and iterative K-SVD enhances the matching performance of gas rate, water rate, bottomhole pressure, and channel properties with geological plausibility.


SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 951-968 ◽  
Author(s):  
Minjie Lu ◽  
Yan Chen

Summary Owing to the complex nature of hydrocarbon reservoirs, the numerical model constructed by geoscientists is always a simplified version of reality: for example, it might lack resolution from discretization and lack accuracy in modeling some physical processes. This flaw in the model that causes mismatch between actual observations and simulated data when “perfect” model parameters are used as model inputs is known as “model error”. Even in a situation when the model is a perfect representation of reality, the inputs to the model are never completely known. During a typical model calibration procedure, only a subset of model inputs is adjusted to improve the agreement between model responses and historical data. The remaining model inputs that are not calibrated and are likely fixed at incorrect values result in model error in a similar manner as the imperfect model scenario. Assimilation of data without accounting for model error can result in the incorrect adjustment to model parameters, the underestimation of prediction uncertainties, and bias in forecasts. In this paper, we investigate the benefit of recognizing and accounting for model error when an iterative ensemble smoother is used to assimilate production data. The correlated “total error” (a combination of model error and observation error) is estimated from the data residual after a standard history-matching using the Levenberg-Marquardt form of iterative ensemble smoother (LM-EnRML). This total error is then used in further data assimilations to improve the estimation of model parameters and quantification of prediction uncertainty. We first illustrate the method using a synthetic 2D five-spot example, where some model errors are deliberately introduced, and the results are closely examined against the known “true” model. Then, the Norne field case is used to further evaluate the method. The Norne model has previously been history-matched using the LM-EnRML (Chen and Oliver 2014), where cell-by-cell properties (permeability, porosity, net-to-gross, vertical transmissibility) and parameters related to fault transmissibility, depths of water/oil contacts, and relative permeability function are adjusted to honor historical data. In this previous study, the authors highlighted the importance of including large amounts of model parameters, the proper use of localization, and heuristic adjustment of data noise to account for modeling error. In this paper, we improve the last aspect by quantitatively estimating model error using residual analysis.


Sign in / Sign up

Export Citation Format

Share Document