scholarly journals Integration of an Iterative Update of Sparse Geologic Dictionaries with ES-MDA for History Matching of Channelized Reservoirs

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Sungil Kim ◽  
Baehyun Min ◽  
Kyungbook Lee ◽  
Hoonyoung Jeong

This study couples an iterative sparse coding in a transformed space with an ensemble smoother with multiple data assimilation (ES-MDA) for providing a set of geologically plausible models that preserve the non-Gaussian distribution of lithofacies in a channelized reservoir. Discrete cosine transform (DCT) of sand-shale facies is followed by the repetition of K-singular value decomposition (K-SVD) in order to construct sparse geologic dictionaries that archive geologic features of the channelized reservoir such as pattern and continuity. Integration of ES-MDA, DCT, and K-SVD is conducted in a complementary way as the initially static dictionaries are updated with dynamic data in each assimilation of ES-MDA. This update of dictionaries allows the coupled algorithm to yield an ensemble well conditioned to static and dynamic data at affordable computational costs. Applications of the proposed algorithm to history matching of two channelized gas reservoirs show that the hybridization of DCT and iterative K-SVD enhances the matching performance of gas rate, water rate, bottomhole pressure, and channel properties with geological plausibility.

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Sungil Kim ◽  
Hyungsik Jung ◽  
Jonggeun Choe

Reservoir characterization is a process to make dependable reservoir models using available reservoir information. There are promising ensemble-based methods such as ensemble Kalman filter (EnKF), ensemble smoother (ES), and ensemble smoother with multiple data assimilation (ES-MDA). ES-MDA is an iterative version of ES with inflated covariance matrix of measurement errors. It provides efficient and consistent global updates compared to EnKF and ES. Ensemble-based method might not work properly for channel reservoirs because its parameters are highly non-Gaussian. Thus, various parameterization methods are suggested in previous studies to handle nonlinear and non-Gaussian parameters. Discrete cosine transform (DCT) can figure out essential channel information, whereas level set method (LSM) has advantages on detailed channel border analysis in grid scale transforming parameters into Gaussianity. However, DCT and LSM have weaknesses when they are applied separately on channel reservoirs. Therefore, we propose a properly designed combination algorithm using DCT and LSM in ES-MDA. When DCT and LSM agree with each other on facies update results, a grid has relevant facies naturally. If not, facies is assigned depending on the average facies probability map from DCT and LSM. By doing so, they work in supplementary way preventing from wrong or biased decision on facies. Consequently, the proposed method presents not only stable channel properties such as connectivity and continuity but also similar pattern with the true. It also gives trustworthy future predictions of gas and water productions due to well-matched facies distribution according to the reference.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3137
Author(s):  
Amine Tadjer ◽  
Reider B. Bratvold ◽  
Remus G. Hanea

Production forecasting is the basis for decision making in the oil and gas industry, and can be quite challenging, especially in terms of complex geological modeling of the subsurface. To help solve this problem, assisted history matching built on ensemble-based analysis such as the ensemble smoother and ensemble Kalman filter is useful in estimating models that preserve geological realism and have predictive capabilities. These methods tend, however, to be computationally demanding, as they require a large ensemble size for stable convergence. In this paper, we propose a novel method of uncertainty quantification and reservoir model calibration with much-reduced computation time. This approach is based on a sequential combination of nonlinear dimensionality reduction techniques: t-distributed stochastic neighbor embedding or the Gaussian process latent variable model and clustering K-means, along with the data assimilation method ensemble smoother with multiple data assimilation. The cluster analysis with t-distributed stochastic neighbor embedding and Gaussian process latent variable model is used to reduce the number of initial geostatistical realizations and select a set of optimal reservoir models that have similar production performance to the reference model. We then apply ensemble smoother with multiple data assimilation for providing reliable assimilation results. Experimental results based on the Brugge field case data verify the efficiency of the proposed approach.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Hyungsik Jung ◽  
Honggeun Jo ◽  
Kyungbook Lee ◽  
Jonggeun Choe

Ensemble Kalman filter (EnKF) uses recursive updates for data assimilation and provides dependable uncertainty quantification. However, it requires high computing cost. On the contrary, ensemble smoother (ES) assimilates all available data simultaneously. It is simple and fast, but prone to showing two key limitations: overshooting and filter divergence. Since channel fields have non-Gaussian distributions, it is challenging to characterize them with conventional ensemble based history matching methods. In many cases, a large number of models should be employed to characterize channel fields, even if it is quite inefficient. This paper presents two novel schemes for characterizing various channel reservoirs. One is a new ensemble ranking method named initial ensemble selection scheme (IESS), which selects ensemble members based on relative errors of well oil production rates (WOPR). The other is covariance localization in ES, which uses drainage area as a localization function. The proposed method integrates these two schemes. IESS sorts initial models for ES and these selected are also utilized to calculate a localization function of ES for fast and reliable channel characterization. For comparison, four different channel fields are analyzed. A standard EnKF even using 400 models shows too large uncertainties and updated permeability fields lose channel continuity. However, the proposed method, ES with covariance localization assisted by IESS, characterizes channel fields reliably by utilizing good 50 models selected. It provides suitable uncertainty ranges with correct channel trends. In addition, the simulation time of the proposed method is only about 19% of the time required for the standard EnKF.


2019 ◽  
Author(s):  
Patrick N. Raanes ◽  
Andreas S. Stordal ◽  
Geir Evensen

Abstract. Ensemble randomized maximum likelihood (EnRML) is an iterative (stochastic) ensemble smoother, used for large and nonlinear inverse problems, such as history matching and data assimilation. Its current formulation is overly complicated and has issues with computational costs, noise, and covariance localization, even causing some practitioners to omit crucial prior information. This paper resolves these difficulties and streamlines the algorithm, without changing its output. These simplifications are achieved through the careful treatment of the linearizations and subspaces. For example, it is shown (a) how ensemble linearizations relate to average sensitivity, and (b) that the ensemble does not loose rank during updates. The paper also draws significantly on the theory of the (deterministic) iterative ensemble Kalman smoother (IEnKS). Comparative benchmarks are obtained with the Lorenz-96 model with these two smoothers and the ensemble smoother using multiple data assimilation (ES-MDA).


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2195-2207 ◽  
Author(s):  
Duc H. Le ◽  
Alexandre A. Emerick ◽  
Albert C. Reynolds

Summary Recently, Emerick and Reynolds (2012) introduced the ensemble smoother with multiple data assimilations (ES-MDA) for assisted history matching. With computational examples, they demonstrated that ES-MDA provides both a better data match and a better quantification of uncertainty than is obtained with the ensemble Kalman filter (EnKF). However, similar to EnKF, ES-MDA can experience near ensemble collapse and results in too many extreme values of rock-property fields for complex problems. These negative effects can be avoided by a judicious choice of the ES-MDA inflation factors, but, before this work, the optimal inflation factors could only be determined by trial and error. Here, we provide two automatic procedures for choosing the inflation factor for the next data-assimilation step adaptively as the history match proceeds. Both methods are motivated by knowledge of regularization procedures—the first is intuitive and heuristical; the second is motivated by existing theory on the regularization of least-squares inverse problems. We illustrate that the adaptive ES-MDA algorithms are superior to the original ES-MDA algorithm by history matching three-phase-flow production data for a complicated synthetic problem in which the reservoir-model parameters include the porosity, horizontal and vertical permeability fields, depths of the initial fluid contacts, and the parameters of power-law permeability curves.


SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1105-1125 ◽  
Author(s):  
Yanbin Zhang ◽  
Jincong He ◽  
Changdong Yang ◽  
Jiang Xie ◽  
Robert Fitzmorris ◽  
...  

Summary We developed a physics-based data-driven model for history matching, prediction, and characterization of unconventional reservoirs. It uses 1D numerical simulation to approximate 3D problems. The 1D simulation is formulated in a dimensionless space by introducing a new diffusive diagnostic function (DDF). For radial and linear flow, the DDF is shown analytically to be a straight line with a positive or zero slope. Without any assumption of flow regime, the DDF can be obtained in a data-driven manner by means of history matching using the ensemble smoother with multiple data assimilation (ES-MDA). The history-matched ensemble of DDFs offers diagnostic characteristics and probabilistic predictions for unconventional reservoirs.


Sign in / Sign up

Export Citation Format

Share Document