High-resolution Time-lapse Cross-Well Full Waveform Inversion for Successful EOR Monitoring in the Middle East

Author(s):  
Y. Nakamura ◽  
A. Kato ◽  
M. Nakatsukasa ◽  
T. Mouri ◽  
M. Takanashi ◽  
...  

Geophysics ◽  
2020 ◽  
pp. 1-42
Author(s):  
Wei Zhou ◽  
David Lumley

Repeated seismic surveys contain valuable information regarding time-lapse (4D) changes in the subsurface. Full waveform inversion (FWI) of seismic data can provide high-resolution estimates of 4D change. We propose a new time-domain 2D acoustic time-lapse FWI method based on the central-difference scheme with higher-order mathematical accuracy and reasonable computational cost. The method is rigorously tested on the SEAM 4D time-lapse model and OBN data set. High-resolution 4D velocity estimates are obtained, which show strong ~25% velocity increases in a 75 m-thick gas layer, as well as weaker (5%) changes due to geomechanical effects, the latter of which are poorly recovered by the conventional parallel 4D FWI method. We also perform the bootstrap 4D FWI method and the result is contaminated by strong artifacts in the underburden, whereas the proposed central-difference method has fewer underburden artifacts allowing more reliable interpretations. In this realistic case study, acoustic FWI erroneously overfits the elastic scattered waves, and cannot fit the strong elastic 4D coda waves at all. The results show that the proposed central-difference 4D FWI method within the acoustic approximation may be a practical solution for time-lapse seismic velocity inversion.



Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE101-VE117 ◽  
Author(s):  
Hafedh Ben-Hadj-Ali ◽  
Stéphane Operto ◽  
Jean Virieux

We assessed 3D frequency-domain (FD) acoustic full-waveform inversion (FWI) data as a tool to develop high-resolution velocity models from low-frequency global-offset data. The inverse problem was posed as a classic least-squares optimization problem solved with a steepest-descent method. Inversion was applied to a few discrete frequencies, allowing management of a limited subset of the 3D data volume. The forward problem was solved with a finite-difference frequency-domain method based on a massively parallel direct solver, allowing efficient multiple-shot simulations. The inversion code was fully parallelized for distributed-memory platforms, taking advantage of a domain decomposition of the modeled wavefields performed by the direct solver. After validation on simple synthetic tests, FWI was applied to two targets (channel and thrust system) of the 3D SEG/EAGE overthrust model, corresponding to 3D domains of [Formula: see text] and [Formula: see text], respectively. The maximum inverted frequencies are 15 and [Formula: see text] for the two applications. A maximum of 30 dual-core biprocessor nodes with [Formula: see text] of shared memory per node were used for the second target. The main structures were imaged successfully at a resolution scale consistent with the inverted frequencies. Our study confirms the feasibility of 3D frequency-domain FWI of global-offset data on large distributed-memory platforms to develop high-resolution velocity models. These high-velocity models may provide accurate macromodels for wave-equation prestack depth migration.



2021 ◽  
Vol 110 ◽  
pp. 103417
Author(s):  
Dong Li ◽  
Suping Peng ◽  
Xingguo Huang ◽  
Yinling Guo ◽  
Yongxu Lu ◽  
...  




2017 ◽  
Author(s):  
Musa Maharramov ◽  
Ganglin Chen ◽  
Partha S. Routh ◽  
Anatoly I. Baumstein ◽  
Sunwoong Lee ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document