Reducing Seismic Multiples in Very Shallow Water Archaeological Prospection

Author(s):  
M. Schwardt ◽  
D. Wilken ◽  
W. Rabbel
2021 ◽  
Vol 13 (10) ◽  
pp. 1871
Author(s):  
Michaela Schwardt ◽  
Dennis Wilken ◽  
Wolfgang Rabbel

Water-layer multiples pose a major problem in shallow water seismic investigations as they interfere with primaries reflected from layer boundaries or archaeology buried only a few meters below the water bottom. In the present study we evaluate two model-driven approaches (“Prediction and Subtraction” and “RTM-Deco”) to attenuate water-layer multiple reflections in very shallow water using synthetic and field data. The tests comprise both multi- and constant-offset data. We compare the multiple removal efficiency of the evaluated methods with two traditional methods (Predictive Deconvolution and SRME). Both model-driven approaches yield satisfactory results concerning the enhancement of primary energy and the attenuation of multiple energy. For the synthetic test cases, the multiple energy is reduced by at least 80% for the Prediction and Subtraction approach, and by more than 60% for the RTM-Deco approach. The application to two field data sets shows a significant amplification of primaries formerly hidden by the first water-layer multiple, with a reduction of multiple energy of up to 50%. The waveforms obtained from FD modeling match the true waveforms of the field data well and small deviations in time and amplitude can be removed by a time shift of the traces as well as an amplitude adaption to the field data. The field data examples should be emphasized, where the tested Prediction and Subtraction approach works significantly better than the traditional methods: the multiples are effectively predicted and attenuated while primary signals are highlighted. In conclusion, this shows that this method is particularly suitable in shallow water applications. Both evaluated multiple attenuation approaches could be successfully transferred to two other 3D systems used in shallow water near surface investigations. Especially the Prediction and Subtraction approach is able to enhance the primaries for both tested 3D systems with the multiple energy being reduced by more than 50%.


2020 ◽  
Vol 649 ◽  
pp. 125-140
Author(s):  
DS Goldsworthy ◽  
BJ Saunders ◽  
JRC Parker ◽  
ES Harvey

Bioregional categorisation of the Australian marine environment is essential to conserve and manage entire ecosystems, including the biota and associated habitats. It is important that these regions are optimally positioned to effectively plan for the protection of distinct assemblages. Recent climatic variation and changes to the marine environment in Southwest Australia (SWA) have resulted in shifts in species ranges and changes to the composition of marine assemblages. The goal of this study was to determine if the current bioregionalisation of SWA accurately represents the present distribution of shallow-water reef fishes across 2000 km of its subtropical and temperate coastline. Data was collected in 2015 using diver-operated underwater stereo-video surveys from 7 regions between Port Gregory (north of Geraldton) to the east of Esperance. This study indicated that (1) the shallow-water reef fish of SWA formed 4 distinct assemblages along the coast: one Midwestern, one Central and 2 Southern Assemblages; (2) differences between these fish assemblages were primarily driven by sea surface temperature, Ecklonia radiata cover, non-E. radiata (canopy) cover, understorey algae cover, reef type and reef height; and (3) each of the 4 assemblages were characterised by a high number of short-range Australian and Western Australian endemic species. The findings from this study suggest that 4, rather than the existing 3 bioregions would more effectively capture the shallow-water reef fish assemblage patterns, with boundaries having shifted southwards likely associated with ocean warming.


2011 ◽  
Vol 181 (11) ◽  
pp. 1222 ◽  
Author(s):  
Aleksandr G. Luchinin ◽  
Aleksandr I. Khil'ko
Keyword(s):  

2012 ◽  
Vol 2 (6) ◽  
pp. 271-272
Author(s):  
Sudhir Pal Singh Rawat ◽  
◽  
Dr. Arnab Das ◽  
Dr. H.G.Virani Dr. H.G.Virani ◽  
Dr. Y.K.Somayajulu Dr. Y.K.Somayajulu

2002 ◽  
Vol 45 (3) ◽  
pp. 301-317 ◽  
Author(s):  
Andrea Mindszenty ◽  
J. Ferenc Deák ◽  
Mária Fölvári

Sign in / Sign up

Export Citation Format

Share Document