DAS VSP Acquisition Through Coiled Tubing Fiber-Optic Cable

Author(s):  
T. Kimura ◽  
Y. Chen ◽  
Y. Kobayashi ◽  
Z. Xue ◽  
K. Adachi
2019 ◽  
Vol 6 (1) ◽  
pp. 48-50
Author(s):  
Ikram Uddin

This study will explain the impact of China-Pak Economic Corridor (CPEC) on logistic system of China and Pakistan. This project is estimated investment of US $90 billion, CPEC project is consists of various sub-projects including energy, road, railway and fiber optic cable but major portion will be spent on energy. This project will start from Kashgar port of china to Gwadar port of Pakistan. Transportation is sub-function of logistic that consists of 44% total cost of logistic system and 20% total cost of production of manufacturing and mainly shipping cost and transit/delivery time are critical for logistic system. According to OEC (The Observing Economic Complexity) currently, china is importing crude oil which 13.4% from Persian Gulf. CPEC will china for lead time that will be reduced from 45 days to 10 days and distance from 2500km to 1300km. This new route will help to china for less transit/deliver time and shipping cost in terms of logistic of china. Pakistan’s transportation will also improve through road, railway and fiber optic cabal projects from Karachi-Peshawar it will have speed 160km per hour and with help of pipeline between Gwadar to Nawabshah gas will be transported from Iran. According to (www.cpec.inf.com) Pakistan logistic industry will grow by US $30.77 billion in the end of 2020.


Author(s):  
I. Juwiler ◽  
I. Bronfman ◽  
N. Blaunstein

Introduction: This article is based on the recent research work in the field of two subjects: signal data parameters in fiber optic communication links, and dispersive properties of optical signals caused by non-homogeneous material phenomena and multimode propagation of optical signals in such kinds of wired links.Purpose: Studying multimode dispersion by analyzing the propagation of guiding optical waves along a fiber optic cable with various refractive index profiles of the inner optical cable (core) relative to the outer cladding, as well as dispersion properties of a fiber optic cable due to inhomogeneous nature of the cladding along the cable, for two types of signal code sequences transmitted via the cable: return-to-zero and non-return-to-zero ones.Methods: Dispersion properties of multimode propagation inside a fiber optic cable are analyzed with an advanced 3D model of optical wave propagation in a given guiding structure. The effects of multimodal dispersion and material dispersion causing the optical signal delay spread along the cable were investigated analytically and numerically.Results: Time dispersion properties were obtained and graphically illustrated for two kinds of fiber optic structures with different refractive index profiles. The dispersion was caused by multimode (e.g. multi-ray) propagation and by the inhomogeneous nature of the material along the cable. Their effect on the capacity and spectral efficiency of a data signal stream passing through such a guiding optical structure is illustrated for arbitrary refractive indices of the inner (core) and outer (cladding) elements of the optical cable. A new methodology is introduced for finding and evaluating the effects of time dispersion of optical signals propagating in fiber optic structures of various kinds. An algorithm is proposed for estimating the spectral efficiency loss measured in bits per second per Hertz per each kilometer along the cable, for arbitrary presentation of the code signals in the data stream, non-return-to zero or return-to-zero ones. All practical tests are illustrated by MATLAB utility.


2021 ◽  
Vol 2021 (HiTEC) ◽  
pp. 000013-000017
Author(s):  
Emad Andarawis ◽  
Cheng-Po (Paul) Chen ◽  
Baokai Cheng

Abstract A high temperature optical link capable of multi-megabits per second data rates at 300°C is presented. The system utilizes wide bandgap optical sources and detectors to achieve extreme temperature operation. Testing was conducted at multiple temperatures between room temperature and 325°C and at multiple light source currents. Light coupling into and out of a UV capable optical fiber was evaluated, and a model was created utilizing the test data of the photodiode dark current and the fiber optic cable insertion loss and attenuation and assess optical communications capability to 325°C and beyond.


2013 ◽  
Vol 824 ◽  
pp. 206-214
Author(s):  
Babatunde A. Adegboye ◽  
B.B. Bello ◽  
K.R. Ekundayo ◽  
Juliet N. Adegboye

This paper deals with data transfer from one computer to another. The serial ports of the computer are used. MAX 232 is used to convert RS 232 logic to TTL logic and then an optical transmitter circuit is used to transmit data via fiber optic cable. The optical transmitter circuit has an LED which is matched with the cable. At the receiver an optical receiver circuit is used which receives data using a photo diode and a MAX 232 again to convert TTL logic to RS 232 for the serial port at the receiving end computer. The desired baud rate can be set. Although the internet can be used, but due to its time consuming nature, one can implement data transfer using wireless medium, though at a relatively high cost. The need, therefore, is felt for fiber optic communication which is cheaper and more suitable for the task. It is cheaper than wireless medium and is prone to lesser loss as compared to wireless medium.


Sign in / Sign up

Export Citation Format

Share Document