Onset of Convective Instability in a Porous Medium with a Low-Permeability Layer

Author(s):  
E. Luther ◽  
M. Dallaston ◽  
S. Shariatipour ◽  
H. Hassanzadeh ◽  
N. Sabet ◽  
...  
2012 ◽  
Vol 9 (1) ◽  
pp. 91-93
Author(s):  
U.R. Ilyasov ◽  
A.V. Dolgushev

The problem of volumetric thermal action on a moist porous medium is considered. Numerical solution, the influence of fluid mobility on the dynamics of the heat and mass transfer process is analyzed. It is established that fluid mobility leads to a softer drying regime. It is shown that in low-permeability media, the fluid can be assumed to be stationary.


1994 ◽  
Vol 37 (1) ◽  
pp. 129-138 ◽  
Author(s):  
Zhang Yiqiang ◽  
Lu Ning ◽  
Benjamin Ross

2014 ◽  
Vol 756 ◽  
pp. 844-869 ◽  
Author(s):  
Duncan R. Hewitt ◽  
Jerome A. Neufeld ◽  
John R. Lister

AbstractPorous geological formations are commonly interspersed with thin, roughly horizontal, low-permeability layers. Statistically steady convection at high Rayleigh number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ra}$ is investigated numerically in a two-dimensional porous medium that is heated at the lower boundary and cooled at the upper, and contains a thin, horizontal, low-permeability interior layer. In the limit that both the dimensionless thickness $h$ and permeability $\Pi $ of the low-permeability layer are small, the flow is described solely by the impedance of the layer $\Omega = h/\Pi $ and by $\mathit{Ra}$. In the limit $\Omega \to 0$ (i.e. $h \to 0$), the system reduces to a homogeneous Rayleigh–Darcy (porous Rayleigh–Bénard) cell. Two notable features are observed as $\Omega $ is increased: the dominant horizontal length scale of the flow increases; and the heat flux, as measured by the Nusselt number $\mathit{Nu}$, can increase. For larger values of $\Omega $, $\mathit{Nu}$ always decreases. The dependence of the flow on $\mathit{Ra}$ is explored, over the range $2500 \leqslant \mathit{Ra} \leqslant 2\times 10^4$. Simple one-dimensional models are developed to describe some of the observed features of the relationship $\mathit{Nu}(\Omega )$.


Sign in / Sign up

Export Citation Format

Share Document