Near Surface Mapping of Parts of the Far Western Limb of the Bushveld Complex Using Geophysics

Author(s):  
T. Nadan ◽  
M. Manzi ◽  
S. Scheiber-Enslin
Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. B187-B199 ◽  
Author(s):  
Cyril Schamper ◽  
Flemming Jørgensen ◽  
Esben Auken ◽  
Flemming Effersø

A newly developed helicopter transient electromagnetic (TEM) system has the ability to measure very early times within just a few μs after the turn off of the primary current. For such a system, careful calibration and accurate modeling of the electromagnetic (EM) response is critical to get true resistivities of the very shallow geologic layers. We discovered that this leads to resolution of the same level or in some cases even better than what can be obtained from airborne frequency EM systems. This allowed a range of important applications where high and accurate resolution is mandatory, e.g., geotechnical applications such as urban planning, railroad and road investigations, landslides or distribution of raw materials, and assessing aquifer vulnerability. We evaluated the results of a pilot survey covering the Norsminde catchment south of Aarhus, Denmark, where we found that near-surface layers (top 30 m) can be mapped with an accuracy of a few meters in a complicated glacial sedimentary environment. The mapping of the geologic layers was assessed by a detailed analysis in which we developed a general methodology for crosschecking the EM and borehole data. This methodology is general and can easily be adapted to other data types and surveys. After rating the quality of the boreholes based on a list of predefined criteria, we concluded that the EM data matched with about three-quarters of the boreholes located within less than 15 m from the closest EM soundings. The remaining quarter of the boreholes fell into two groups in which half of the boreholes were of very poor quality or had inaccurate coordinates. Only eight of all the boreholes could not be reproduced by the data, and we attributed this to be caused by very strong lateral or vertical geologic variations not resolvable by the TEM technique.


2018 ◽  
Vol 54 (6) ◽  
pp. 885-912 ◽  
Author(s):  
Malte Junge ◽  
Thomas Oberthür ◽  
Dennis Kraemer ◽  
Frank Melcher ◽  
Ruben Piña ◽  
...  

2002 ◽  
Vol 66 (6) ◽  
pp. 815-832 ◽  
Author(s):  
H. V. Eales

Abstract The composition of magmas proposed as parental to the layered suite of the Bushveld Complex, and some models for the manner of their emplacement, are reviewed briefly. Included are some contributions published in South Africa, with which overseas readers might be less familiar. Emphasis is given to the broader features of the cumulates, and the contradictions raised by whole-rock compositional, Sr-isotopic, and trace-element data that cloud their correlation with proposed parental magmas. It is concluded that the Lower, Critical and Main Zones are the derivatives of only two primary magmatic lineages, while a third was added to residual liquids from which the layered rocks above the Pyroxenite Marker were formed. Excessive amounts of olivine and chromium in the cumulates of the Lower and Lower Critical Zones in the northern sector of the Western Limb can seemingly not be accounted for by the composition and volume of the putative magmas. This is attributed to (1) this sector being a proximal facies located close to the original feeder, and/or (2) crystal-charged magma batches, expelled from a lower magma chamber, being periodically injected into and dispersed within the liquids already in place in the Bushveld chamber. Thus, ongoing changes in the bulk composition of the liquids within the chamber would not be reflected in the rinds of earlier, chilled-facies rocks. The expulsion of significant volumes of liquid residua from the chamber during cumulate deposition is not ruled out.


Sign in / Sign up

Export Citation Format

Share Document