Slowness Vector vs. Ray Direction in Polar Anisotropic Media

Author(s):  
I. Ravve ◽  
Z. Koren
Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB193-WB202 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Such reservoir rocks as tar sands are characterized by significant attenuation and, in some cases, attenuation anisotropy. Most existing attenuation studies are focused on plane-wave attenuation coefficients, which determine the amplitude decay along the raypath of seismic waves. Here we study the influence of attenuation on PP- and PS-wave reflection coefficients for anisotropic media with the main emphasis on transversely isotropic models with a vertical symmetry axis (VTI). Concise analytic solutions obtained by linearizing the exact plane-wave reflection coefficients are verified by numerical modeling. To make a substantial contribution to reflection coefficients, attenuation must be strong, with the quality factor [Formula: see text] not exceeding 10. For such highly attenuative media, it is also necessary to take attenuation anisotropy into account if the magnitude of the Thomsen-styleattenuation-anisotropy parameters is relatively large. In general, the linearized reflection coefficients in attenuative media include velocity-anisotropy parameters but have almost “isotropic” dependence on attenuation. Our formalism also helps evaluate the influence of the inhomogeneity angle (the angle between the real and imaginary parts of the slowness vector) on the reflection coefficients. A nonzero inhomogeneity angle of the incident wave introduces additional terms into the PP- and PS-wave reflection coefficients, which makes conventional amplitude-variation-with-offset (AVO) analysis inadequate for strongly attenuative media. For instance, an incident P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-wave at normal incidence, even if both half-spaces have a horizontal symmetry plane. The developed linearized solutions can be used in AVO inversion for highly attenuative (e.g., gas-sand and heavy-oil) reservoirs.


Geophysics ◽  
2020 ◽  
Vol 86 (1) ◽  
pp. C19-C35
Author(s):  
Jianlu Wu ◽  
Bing Zhou ◽  
Xingwang Li ◽  
Youcef Bouzidi

In viscoelastic anisotropic media, the elastic moduli, slowness vector, phase, and ray velocity are all complex-valued quantities in the frequency domain. Solving the complex eikonal equation becomes computationally complex and time-consuming. We have developed two approximate methods to effectively calculate the ray velocity vector, attenuation, and quality factor in viscoelastic transversely isotropic media with a vertical symmetry axis (VTI) and in orthorhombic (ORT) anisotropy. The first method is based on the perturbation theory (PER) under the assumption of a homogeneous complex ray vector, which is obtained by applying the elastic background and viscoelastic perturbations to the real and imaginary components of the modulus tensor, respectively. The perturbations of the slowness vectors of the three wave modes (qP, qSV, and qSH) are determined through the vanishing Hamiltonian function. The second method is derived by applying a real slowness direction (RSD) to the inhomogeneous complex slowness vector and then approximately calculating the complex ray velocity vector with the condition of the homogeneous complex vector. The numerical results verify that the two approaches can produce accurate ray velocity vector, attenuation, and quality factors of the qP-wave in viscoelastic VTI and ORT media. The RSD method can yield high accuracies of ray velocity for the qSV- and qSH-wave in viscoelastic VTI models even at triplication of the qSV wavefronts, as well as qS1 and qS2 in a weak ORT medium ([Formula: see text] > 20), except for near the cusp of the qS1 wavefronts (errors approximately 6%) where the PER has more than 10% error.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. C153-C160 ◽  
Author(s):  
Lijiao Zhang ◽  
Bing Zhou

Kinematic ray tracing is an effective way to simulate the seismic wave propagation in isotropic and anisotropic media. It is essential to know the ray velocity when tracing seismic rays. But in anisotropic media, the ray velocity is a function of the direction of the slowness vector instead of the ray direction and it often deviates from the phase velocity. In this case, it causes a critical problem for ray tracing, which is how to calculate the ray velocity from a known ray direction. If we could calculate the phase slowness vector from ray directions, the ray velocity could be computed. We have evaluated a previous method in the first place. Then, we developed two new methods to solve two existing problems of the previous method: (1) It leads to complex and multiple solutions of the slowness vector and (2) it mixes up the qP- and qSV-wave modes. Our first method solves the two problems by applying eigenvalues to separate the wave modes and decrease the two unknowns ([Formula: see text] and [Formula: see text]) to only one unknown in two equations. Our second method is based on the general relationship between the slowness and ray-velocity vectors and shows that only one unknown is involved in one equation for tilted transversely isotropic (TTI) media. After obtaining the slowness vector, the ray velocity can be computed easily. A 2D model is designed to test the feasibility of the new methods. Using the results for the model, we found that the presented approaches were applicable for ray tracing in TTI media.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB147-WB152 ◽  
Author(s):  
Claudia Vanelle ◽  
Dirk Gajewski

Snell’s law describes the relationship between phase angles and velocities during the reflection or transmission of waves. It states that horizontal slowness with respect to an interface is preserved during reflection or transmission. Evaluation of this relationship at an interface between two isotropic media is straightforward. For anisotropic media, it is a complicated problem because phase velocity depends on the angle; in the anisotropic reflection/transmission problem, neither is known. Solving Snell’s law in the anisotropic case requires a numerical solution for a sixth-order polynomial. In addition to finding the roots, they must be assigned to the correct reflected or transmitted wave type. We show that if the anisotropy is weak, an approximate solution based on first-order perturbation theory can be obtained. This approach permits the computation of the full slowness vector and, thereby, the phase velocity and angle. In addition to replacing the need for solving the sixth-order polynomial, the resulting expressions allow us to prescribe the desired reflected or transmitted wave type. The method is best implemented iteratively to increase accuracy. The result can be applied to anisotropic media with arbitrary symmetry. It converges toward the weak-anisotropy solution and provides overall good accuracy for media with weak to moderate anisotropy.


Author(s):  
Igor Ravve ◽  
Zvi Koren

Summary The inverse problem of finding the slowness vector from a known ray direction in general anisotropic elastic media is a challenging task, needed in many wave/ray-based methods, in particular, solving two-point ray bending problems. The conventional resolving equation set for general (triclinic) anisotropy consists of two fifth-degree polynomials and a sixth-degree polynomial, resulting in a single physical solution for quasi-compressional (qP) waves and up to 18 physical solutions for quasi-shear waves (qS). For polar anisotropy (transverse isotropy with a tilted symmetry axis), the resolving equations are formulated for the slowness vectors of the coupled qP and qSV waves (quasi-shear waves polarized in the axial symmetry plane), and independently for the decoupled pure shear waves polarized in the normal (to the axis) isotropic plane (SH). The novelty of our approach is the introduction of the geometric constraint that holds for any wave mode in polar anisotropic media: The three vectors—the slowness, ray velocity and medium symmetry axis—are coplanar. Thus, the slowness vector (to be found) can be presented as a linear combination of two unit-length vectors: the polar axis and the ray velocity directions, with two unknown scalar coefficients. The axial energy propagation is considered as a limit case. The problem is formulated as a set of two polynomial equations describing: a) the collinearity of the slowness-related Hamiltonian gradient and the ray velocity direction (third-order polynomial equation), and b) the vanishing Hamiltonian (fourth-order polynomial equation). Such a system has up to twelve real and complex-conjugate solutions, which appear in pairs of the opposite slowness directions. The common additional constraint, that the angle between the slowness and ray directions does not exceed ${90^{\rm{o}}}$, cuts off one half of the solutions. We rearrange the two bivariate polynomial equations and the above-mentioned constraint as a single univariate polynomial equation of degree six for qP and qSV waves, where the unknown parameter is the phase angle between the slowness vector and the medium symmetry axis. The slowness magnitude is then computed from the quadratic Christoffel equation, with a clear separation of compressional and shear roots. The final set of slowness solutions consists of a unique real solution for qP wave and one or three real solutions for qSV (due to possible triplications). The indication for a qSV triplication is a negative discriminant of the sixth-order polynomial equation, and this discriminant is computed and analyzed directly in the ray-angle domain. The roots of the governing univariate sixth-order polynomial are computed as eigenvalues of its companion matrix. The slowness of the SH wave is obtained from a separate equation with a unique analytic solution. We first present the resolving equation using the stiffness components, and then show its equivalent forms with the well-known parameterizations: Thomsen, Alkhalifah and ‘weak-anisotropy’. For the Thomsen and Alkhalifah forms, we also consider the (essentially simplified) acoustic approximation for qP waves governed by the quartic polynomials. The proposed method is coordinate-free and can be applied directly in the global Cartesian frame. Numerical examples demonstrate the advantages of the method.


Sign in / Sign up

Export Citation Format

Share Document