Characterization of a Coastal Area From Integration of Resistivity and Active Multicomponent Seismic Data

Author(s):  
F. Da Col ◽  
F. Accaino ◽  
G. Böhm ◽  
S. Picotti ◽  
M. Giorgi ◽  
...  
2007 ◽  
Author(s):  
Zhongping Qian ◽  
Xiang‐Yang Li ◽  
Mark Chapman ◽  
Yonggang Zhang ◽  
Yanguang Wang

2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Jianguang Han ◽  
Zhiwei Liu ◽  
Yun Wang ◽  
Jiayong Yan ◽  
Bingluo Gu

Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


Sign in / Sign up

Export Citation Format

Share Document