scholarly journals Evaluation of natural surfaces in a dry tropical environment by remote sensing and ground survey

Cybergeo ◽  
1996 ◽  
Author(s):  
Vincent Godard
2016 ◽  
Vol 22 (1) ◽  
pp. 81-92
Author(s):  
ROBERT KENNETH DENTON ◽  
ASHLEY HOGAN ◽  
RONALD DREW THOMAS

1978 ◽  
Vol 58 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
P. K. BASU ◽  
V. R. WALLEN ◽  
H. R. JACKSON

Methodology was developed utilizing remote sensing techniques to separate and quantitatively measure the various components of alfalfa (Medicago sativa L.) fields containing void areas as well as short grass and weeds. Infrared color film was exposed over mixed hay fields in the Carp and Vernon regions of eastern Ontario in the spring of 3 successive yr (1974–1976). Ground observations were made to ascertain field conditions to confirm the location and the interpretation of dense or sparse alfalfa, tall or short grass, weeds and void areas on the photographs. In 12 representative fields, the percentage of alfalfa, grass and void areas was determined for each year by image area measurements based on optical densities of the photographs. Analysis of soil and alfalfa root samples from these fields confirmed the absence of the root rot pathogen Phytophthora megasperma Drechs. or any other fungi pathogenic to alfalfa. Saprophytic species of Fusarium and Pythium were prevalent in each field. The genera of nematodes found in the samples were not considered harmful to alfalfa. Therefore, an estimated 14% loss of alfalfa was attributed to winter injury during the 3-yr period. The amount of grass increased by 28% and void areas decreased by 14% in these fields.


2006 ◽  
Vol 33 (3) ◽  
pp. 476-490 ◽  
Author(s):  
Neil Stuart ◽  
Timothy Barratt ◽  
Christopher Place

2017 ◽  
Vol 5 (4) ◽  
pp. 365-381 ◽  
Author(s):  
Richard A. Friedman ◽  
Anna Sofaer ◽  
Robert S. Weiner

ABSTRACTThis paper reports on the first and highly effective use of Light Detection and Ranging (lidar) technology to document Chaco roads, monumental linear surface constructions of the precolumbian culture that occupied the Four Corners region of the American Southwest between approximately AD 600 and 1300. Analysis of aerial photographs supplemented by ground survey has been the traditional methodology employed to identify Chaco roads, but their traces have become increasingly subtle and difficult to detect in recent years due to the impacts of natural weathering, erosion, and land development. Roads that were easily visible in aerial photography and on the ground in the 1980s are now virtually invisible, underscoring the need for new, cutting-edge techniques to detect and document them. Using three case studies of the Aztec Airport Mesa Road, the Great North Road, and the Pueblo Alto Landscape, we demonstrate lidar's unprecedented ability to document known Chaco roads, discover previously undetected road segments, and produce a precise quantitative record of these rapidly vanishing features.


Author(s):  
Natalya V. Ivanova ◽  
◽  
Maxim P. Shashkov ◽  
Vladimir N. Shanin ◽  
◽  
...  

Nowadays, due to the rapid development of lightweight unmanned aerial vehicles (UAV), remote sensing systems of ultra-high resolution have become available to many researchers. Conventional ground-based measurements for assessing tree stand attributes can be expensive, as well as time- and labor-consuming. Here, we assess whether remote sensing measurements with lightweight UAV can be more effective in comparison to ground survey methods in the case of temperate mixed forests. The study was carried out at the Prioksko-Terrasny Biosphere Nature Reserve (Moscow region, Russia). This area belongs to a coniferous-broad-leaved forest zone. Our field works were carried out on the permanent sampling plot of 1 ha (100×100 m) established in 2016. The coordinates of the plot center are N 54.88876°, E 37.56273° in the WGS 84 datum. All trees with DBH (diameter at breast height) of at least 6 cm (779 trees) were mapped and measured during the ground survey in 2016 (See Fig. 1 and Table 1). Mapping was performed with Laser Technology TruPulse 360B angle and a distance meter. First, polar coordinates of each tree trunk were measured, and then, after conversion to the cartesian coordinates, the scheme of the stand was validated onsite. Species and DBH were determined for each tree. For each living tree, we detected a social status class (according to Kraft). Also for living trees, we measured the tree height and the radii of the crown horizontal projection in four cardinal directions. A lightweight UAV Phantom 4 (DJI-Innovations, Shenzhen, China) equipped with an integrated camera of 12Mp sensor was used for aerial photography in this study. Technical parameters of the camera are available in Table 2. The aerial photography was conducted on October 12, 2017, from an altitude of 68 m. The commonly used mosaic flight mode was used with 90% overlapping both for side and front directions. We applied Agisoft Metashape software for orthophoto mosaic image and dense point cloud building. The canopy height model (CHM) was generated with lidR package in R. We used lasground() function and cloth simulation filter for classification of ground points. To create a normalized dataset with the ground at 0, we used spatial interpolation algorithm tin based on a Delaunay triangulation, which performs a linear interpolation within each triangle, implemented in the lasnormilise() function. CHM was generated according to the pit-free algorithm based on the computation of a set of classical triangulations at different heights. The location and height of individual trees were automatically detected by the function FindTreesCHM() from the package rLIDAR in R. The algorithm implemented in this function is local maximum with fixed window size. Accuracy assessment of automatically detected trees (in QGIS software) was performed through visual interpretation of orthophoto mosaic and comparison with ground survey data. The number of correctly detected trees, omitted by the algorithm and not existing but detected trees were counted. As a result of aerial photography, 501 images were obtained. During these data processing with the Metashape, dense point cloud of 163.7 points / m2 was generated. CHM with 0.5 m resolution was calculated. According to the individual-tree detection algorithm, 241 trees were found automatically (See Fig. 2A). The total accuracy of individual tree detection was 73.9%. Coniferous trees (Pinus sylvestris and Picea abies) were successfully detected (86.0% and 100%, respectively), while results for birch (Betula spp.) required additional treatment. The algorithm correctly detected only 58.2% of birch trees due to false-positive trees (See Fig. 2B and Table 3). These results confirm the published literature data obtained for managed tree stands. Tree heights retrieved from the UAV were well-matched to ground-based method results. The mean tree heights retrieved from the UAV and ground surveys were 25.0±4.8 m (min 8.2 m, max 32.9 m) and 25.3±5.2 m (min 5.9 m, max 34.0 m), respectively (no significant difference, p-value=0.049). Linear regression confirmed a strong relationship between the estimated and measured heights (y=k*x, R2 =0.99, k=0.98) (See Fig. 3A). Slightly larger differences in heights estimated by the two methods were found for birch and pine; for spruce, the differences were smaller (See Fig. 3B and Table 4). We believe that ground measurements of birch and pine height are less accurate than for spruce due to different crown shapes of these trees. So, our results suggested that UAV data can be used for tree stand attributes estimation, but automatically obtained data require validation.


2004 ◽  
Vol 18 (2) ◽  
pp. 437-442 ◽  
Author(s):  
Lawrence W. Lass ◽  
Timothy S. Prather

Brazilian pepper is a small evergreen tree that forms dense colonies. It was introduced for horticultural use in the United States in the early 1800s and was widely distributed in Florida in the late 1920s. Previous remote-sensing projects to detect Brazilian pepper achieved moderate success and warranted additional research using a hyperspectral sensor. Detection with remote sensing is desirable because complete access to ground survey crews is not practical. The western half of the Everglades National Park was imaged at a 5-m spatial resolution with a hyperspectral sensor by Earth Search Sciences Inc. of Kalispell, MT, on December 12, 2000, and January 10, 2001. The sensor has 128 channels and spectral resolution between 450 and 2,500 nm. The purpose of this research was to develop spectral reflectance curves for Brazilian pepper and establish the accuracy of classified images. Classified images showed that a hyperspectral sensor could detect a “pure” Brazilian pepper pixel representing the center of an infestation but not “mixed” Brazilian pepper pixels at the sparsely populated edges. To define the sparse populations, images were classified using a spatial buffer (15- to 100-m radius) based on a low–omissional error image. A 25-m buffer reduced the amount of commissional error for Brazilian pepper in mangrove-dominated forest to 8.2% and buttonwood-dominated forest to 0%. Wider buffers did not significantly improve image accuracy when compared with the 25-m buffer distance. Results indicate that removal crews using hyperspectral images will be able to reliably find the colonies of Brazilian pepper but will not be able to use the images to find isolated scattered trees.


Sign in / Sign up

Export Citation Format

Share Document