scholarly journals Integration of ground survey and remote sensing derived data: Producing robust indicators of habitat extent and condition

2019 ◽  
Vol 9 (14) ◽  
pp. 8104-8112 ◽  
Author(s):  
Peter A. Henrys ◽  
Susan G. Jarvis
2021 ◽  
Author(s):  
Chadi Abdallah ◽  
Gina Tarhini ◽  
Mariam Daher ◽  
Hussein Khatib ◽  
Mark Zeitoun

<p>Coping with the issue of water scarcity and growing competition for water among different sectors requires effective water management strategies and decision processes. ‘Getting it right’ becomes doubly important when dealing with intenational transboundary rivers. The Yarmouk tributary to the Jordan River is one highly exploited in the Middle East, and is enveloped by ambiguous treaties and decades of violent and non-violent conflict. Seeking to chart a more sustainable and equitable future, this work performs a 'water accounting plus' methodology employing readily available remotely sensed satellite-based data coupled with available measurements.  A variety of methods described herein were used to detect irrigated crops and produce maps showing the distribution throughout the basin. The framework also focuses on the classification of land use categories and the processes by which water is depleted over all land use classes that contributes to separate the beneficial from non-beneficial usage of water. The analysis was started prior to the 2011 start of the Syrian war in order to study the initial distribution of land use classes as well as the water depletion processes before any change in the basin. It shows that more than half of the exploitable water is not consumed within the basin and depleted outside. In contrast, most of the water consumed within the basin is wasted and depleted in a non-beneficial way. Roughly 35% of the cultivated area shown to be irrigated through withdrawals which exceed the capacity of the source. This result reflects the high abstraction rates from groundwater via a large number of unlicensed wells mostly located at the Syrian side. This study also detect a deficiency in the water balance of the Yarmouk River. The findings are relevant to sustainable management not only for water-dependent sectors but also for geopolitical stability among the riparian countries. In this way, open- access remote sensing derived data can provide useful information about the status of water resources especially when ground measurements are poor or absent.</p><p> </p><p>Keywords: Yarmouk, Water Accounting Plus, IWM, Irrigated crops, WAPOR.</p>


Urban Science ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 101 ◽  
Author(s):  
Lucille Alonso ◽  
Florent Renard

With the phenomenon of urban heat island and thermal discomfort felt in urban areas, exacerbated by climate change, it is necessary to best estimate the air temperature in every part of an area, especially in the context of the on-going rationalization weather stations network. In addition, the comprehension of air temperature patterns is essential for multiple applications in the fields of agriculture, hydrology, land development or public health. Thus, this study proposes to estimate the air temperature from 28 explanatory variables, using multiple linear regressions. The innovation of this study is to integrate variables from remote sensing into the model in addition to the variables traditionally used like the ones from the Land Use Land Cover. The contribution of spectral indices is significant and makes it possible to improve the quality of the prediction model. However, modeling errors are still present. Their locations and magnitudes are analyzed. However, although the results provided by modelling are of good quality in most cases, particularly thanks to the introduction of explanatory variables from remote sensing, this can never replace dense networks of ground-based measurements. Nevertheless, the methodology presented, applicable to any territory and not requiring specific computer resources, can be highly useful in many fields, particularly for urban planners.


2016 ◽  
Vol 22 (1) ◽  
pp. 81-92
Author(s):  
ROBERT KENNETH DENTON ◽  
ASHLEY HOGAN ◽  
RONALD DREW THOMAS

2020 ◽  
Author(s):  
Rosa Di Maio ◽  
Eleonora Vitagliano ◽  
Rosanna Salone

<p>The study of flooding events resulting from bank over-flooding and levee breaching is of large interest for both society and environment, because flood waves, resulting from levee failure, might cause loss of lives and destruction of properties and ecosystems. Understanding the subsoil mechanics and the fluid-solid interplay allows the stability condition estimate of dams, embankments and slopes and the development of early warning alarm systems. Changes in soil and hydraulic parameters are usually monitored by geotechnical and geophysical investigations that also provide the basic assumptions for developing hydraulic models. Nowadays, remote sensing approaches, including satellite techniques, are mainly used for flooding simulation studies. Indeed, remote sensing observations, such as discharge, flood area extent and water stage, have been used for retrieving flood hydrology information and modeling, calibrating and validating hydrodynamic models, improving model structures and developing data assimilation models. Although all these studies have contributed significantly to the recent advances, uncertainty in observations, as well as in model parameters and prediction, represents a critical aspect for using remote sensing data in the flooding defence. Compared to past and current methods for monitoring the fluvial levee failure, we propose a new procedure that provides a wide and fast alert system. The proposed methodological path is based on presumed relationships between ground level deformation and hydrological and surface soil properties, due to physical mechanisms and exhibited by geodetic and hydrological time series. The procedure is accomplished first through multi-methodological comparative analyses applied to geodetic, hydrological and soil-properties patterns, then through the mapping of the river zones prone to failure. Since the input consists of time series satellite-derived data, the geospatial Artificial Intelligence is applied for extracting knowledge from spatial big data and for increasing the performance of data computing. In particular, machine learning is initially developed for selecting the relevant geographical areas (i.e. rivers, levees and riverbanks) from large geo-referential datasets. Then, since the spatial-distributed points are also time-dependent, the trends of different datasets are compared point by point by selected analytical techniques. Finally, in accordance with the acquired knowledge from previous steps, the system extracts information on the correlation indexes in order to make sense of patterns in space and time and to identify hierarchic orders for the realization of hazard maps. The proposed method is “wide” because, unlike other direct surveys, it is able to monitor large spatial areas since it is based on satellite-derived data. It is also “fast” because it is based on the Earth’s surface observation and is not connected with Earth’s inland investigations (such as the geotechnical and geophysical ones) or with forecasting models (e.g. hydraulic and flooding simulations). Due to these peculiarities, the method can support flood protection studies and can be used for driving the localization of river portions prone to failure, where focusing detailed geotechnical and geophysical surveys.</p>


2021 ◽  
Vol 13 (24) ◽  
pp. 4973
Author(s):  
Deborah Balk ◽  
Stefan Leyk ◽  
Mark R. Montgomery ◽  
Hasim Engin

By 2050, two-thirds of the world’s population is expected to be living in cities and towns, a marked increase from today’s level of 55 percent. If the general trend is unmistakable, efforts to measure it precisely have been beset with difficulties: the criteria defining urban areas, cities and towns differ from one country to the next and can also change over time for any given country. The past decade has seen great progress toward the long-awaited goal of scientifically comparable urbanization measures, thanks to the combined efforts of multiple disciplines. These efforts have been organized around what is termed the “statistical urbanization” concept, whereby urban areas are defined by population density, contiguity and total population size. Data derived from remote-sensing methods can now supply a variety of spatial proxies for urban areas defined in this way. However, it remains to be understood how such proxies complement, or depart from, meaningful country-specific alternatives. In this paper, we investigate finely resolved population census and satellite-derived data for the United States, Mexico and India, three countries with widely varying conceptions of urban places and long histories of debate and refinement of their national criteria. At the extremes of the urban–rural continuum, we find evidence of generally good agreement between the national and remote sensing-derived measures (albeit with variation by country), but identify significant disagreements in the middle ranges where today’s urban policies are often focused.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Soyeon Bae ◽  
Shaun R. Levick ◽  
Lea Heidrich ◽  
Paul Magdon ◽  
Benjamin F. Leutner ◽  
...  

Abstract Recent progress in remote sensing provides much-needed, large-scale spatio-temporal information on habitat structures important for biodiversity conservation. Here we examine the potential of a newly launched satellite-borne radar system (Sentinel-1) to map the biodiversity of twelve taxa across five temperate forest regions in central Europe. We show that the sensitivity of radar to habitat structure is similar to that of airborne laser scanning (ALS), the current gold standard in the measurement of forest structure. Our models of different facets of biodiversity reveal that radar performs as well as ALS; median R² over twelve taxa by ALS and radar are 0.51 and 0.57 respectively for the first non-metric multidimensional scaling axes representing assemblage composition. We further demonstrate the promising predictive ability of radar-derived data with external validation based on the species composition of birds and saproxylic beetles. Establishing new area-wide biodiversity monitoring by remote sensing will require the coupling of radar data to stratified and standardized collected local species data.


1978 ◽  
Vol 58 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
P. K. BASU ◽  
V. R. WALLEN ◽  
H. R. JACKSON

Methodology was developed utilizing remote sensing techniques to separate and quantitatively measure the various components of alfalfa (Medicago sativa L.) fields containing void areas as well as short grass and weeds. Infrared color film was exposed over mixed hay fields in the Carp and Vernon regions of eastern Ontario in the spring of 3 successive yr (1974–1976). Ground observations were made to ascertain field conditions to confirm the location and the interpretation of dense or sparse alfalfa, tall or short grass, weeds and void areas on the photographs. In 12 representative fields, the percentage of alfalfa, grass and void areas was determined for each year by image area measurements based on optical densities of the photographs. Analysis of soil and alfalfa root samples from these fields confirmed the absence of the root rot pathogen Phytophthora megasperma Drechs. or any other fungi pathogenic to alfalfa. Saprophytic species of Fusarium and Pythium were prevalent in each field. The genera of nematodes found in the samples were not considered harmful to alfalfa. Therefore, an estimated 14% loss of alfalfa was attributed to winter injury during the 3-yr period. The amount of grass increased by 28% and void areas decreased by 14% in these fields.


Sign in / Sign up

Export Citation Format

Share Document