scholarly journals Seeing the Ice. An Overview of Alpine Glacier Tourism Sites, Between Post- and Hyper-Modernity

2021 ◽  
Author(s):  
Emmanuel Salim ◽  
Christophe Gauchon ◽  
Ludovic Ravanel
Keyword(s):  
1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


2016 ◽  
Author(s):  
Kate M. Swanger ◽  
◽  
Joerg M. Schaefer ◽  
Gisela Winckler

2010 ◽  
Vol 4 (3) ◽  
pp. 381-396 ◽  
Author(s):  
M. A. Werder ◽  
T. V. Schuler ◽  
M. Funk

Abstract. We first present the results of a series of tracer experiments conducted on an alpine glacier (Gornergletscher, Switzerland) over a diurnal discharge cycle. For these injections, a moulin was used into which an ice marginal lake was draining, providing a relatively constant discharge. The measured tracer transit speeds show two diurnal maxima and minima. These findings are qualitatively different to existing observations from two series of injections conducted at Unteraargletscher (Switzerland) using a moulin fed by supraglacial meltwater having a high diurnal variability, which displayed one diurnal maximum and minimum. We then develop and use a simple two-component model of the glacier drainage system, comprising a moulin and a channel element, to simulate the measured transit speeds for all three injection series. The model successfully reproduces all the observations and shows that the same underlying processes can produce the qualitatively different behaviour depending on the different moulin input discharge regimes. Using the model, we assess the relative importance of the different measurement quantities, show that frequent measurements of moulin input discharge are indispensable and propose an experiment design to monitor the development of the drainage system over several weeks.


2007 ◽  
Vol 89 (3) ◽  
pp. 167-184 ◽  
Author(s):  
Michele Citterio ◽  
Guglielmina Diolaiuti ◽  
Claudio Smiraglia ◽  
Carlo D'agata ◽  
Teresa Carnielli ◽  
...  

2021 ◽  
Author(s):  
Niccolò Dematteis ◽  
Fabrizio Trolio ◽  
Daniele Giordan

<p>The Planpincieux Glacier lies in the Italian side of the Grandes Jorasses massif (Mont Blanc area), toward the Ferret Valley, in the Courmayeur municipality. This is a highly touristic area, visited every year by tens of thousands of people.</p><p>In summers 2019 and 2020, large portions of the Montitaz Lobe of the glacier (estimated volumes of 250000 m<sup>3</sup> and 500000 m<sup>3</sup> respectively) became unstable and menaced the Planpincieux village. According to runout simulations, such volumes could have reached and damaged a small bridge, buildings or the main valley road, depending on the volume involved in the collapse. Therefore, robust volume estimation was required for the realisation of effective safety plans.</p><p>To this aim, a helicopter-borne ground-penetrating-radar (GPR) survey was conducted in July 2020 with the novel dual polarization AIRETH system. Such a survey provided the ice thickness (20-60 ±10 m) of the unstable portion  and the bedrock topography along transects.</p><p>Besides, multiple helicopter and drone photogrammetric surveys were acquired since 2017, which provided the digital terrain model (DTM) and the orthophotos of the glacier using structure from motion (SfM) technique.</p><p>Merging GPR and SfM allowed at reconstructing the evolution of the glacier shrinkage in the period where DTMs were available. Moreover, it was possible to assess the correspondence of several bedrock discontinuities with large recurrent fractures.</p><p>Even though it is commonly acknowledged that the bedrock topography influences the glacier morphology, their correspondence has been rarely demonstrated in an Alpine glacier.</p><p>Since the fractures provoked by the bedrock discontinuities might destabilise the underlying glacier portion, the knowledge of the actual position of such fractures can help in the quantitative evaluation of the glacier instability. This can have a strong impact in the potential glacier-related risk assessment and management.</p>


2021 ◽  
Author(s):  
Fabian Walter ◽  
Patrick Paitz ◽  
Andreas Fichtner ◽  
Pascal Edme ◽  
Wojciech Gajek ◽  
...  

<p>Over the past 1-2 decades, seismological measurements have provided new and unique insights into glacier and ice sheet dynamics. At the same time, sensor coverage is typically limited in harsh glacial environments with littile or no access. Turning kilometer-long fiber optic cables placed on the Earth’s surface into thousands of seismic sensors, Distributed Acoustic Sensing (DAS) may overcome the limitation of sensor coverage in the cryosphere.</p><p>First DAS applications on the Greenland and Antarctic ice sheets and on Alpine glacier ice have highlighted the technique’s superiority. Signals of natural and man-made seismic sources can be resolved with an unrivaled level of detail. This offers glaciologists new perspectives to interpret their seismograms in terms of ice structure, basal boundary conditions and source locations. However, previous studies employed only relatively small network scales with a point-like borehole deployment or < 1 km cable aperture at the ice surface.</p><p>Here we present a DAS installation, which aims to cover the majority of an Alpine glacier catchment: For one month in summer 2020 we deployed a 9 km long fiber optic cable on Rhonegletscher, Switzerland, and gathered continuous DAS data. The cable followed the glacier’s central flow line starting in the lowest kilometer of the ablation zone and extending well into the accumulation area. Even for a relatively small mountain glacier such as Rhonegletscher, cable deployment was a considerable logistical challenge. However, initial data analysis illustrates the benefit compared to conventional cryoseismological instrumentation: DAS measurements capture ground deformation over many octaves, including typical high-frequency englacial sources (10s to 100s of Hz) related to crevasse formation and basal sliding as well as long period signals (10s to 100s of seconds) of ice deformation. Depending on the presence of a snow cover, DAS records contain strong environmental noise (wind, meltwater flow, precipitation) and thus exhibit lower signal-to-noise ratios compared to conventional on-ice seismic installations. This is nevertheless outweighed by the advantage of monitoring ground unrest and ice deformation of nearly an entire glacier. We present a first compilation of signal and noise records and discuss future directions to leverage DAS data sets in glaciological research.</p><p> </p><p> </p><p> </p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
R. Nishiyama ◽  
A. Ariga ◽  
T. Ariga ◽  
A. Lechmann ◽  
D. Mair ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document