scholarly journals Short term variations of tracer transit speed on alpine glaciers

2010 ◽  
Vol 4 (3) ◽  
pp. 381-396 ◽  
Author(s):  
M. A. Werder ◽  
T. V. Schuler ◽  
M. Funk

Abstract. We first present the results of a series of tracer experiments conducted on an alpine glacier (Gornergletscher, Switzerland) over a diurnal discharge cycle. For these injections, a moulin was used into which an ice marginal lake was draining, providing a relatively constant discharge. The measured tracer transit speeds show two diurnal maxima and minima. These findings are qualitatively different to existing observations from two series of injections conducted at Unteraargletscher (Switzerland) using a moulin fed by supraglacial meltwater having a high diurnal variability, which displayed one diurnal maximum and minimum. We then develop and use a simple two-component model of the glacier drainage system, comprising a moulin and a channel element, to simulate the measured transit speeds for all three injection series. The model successfully reproduces all the observations and shows that the same underlying processes can produce the qualitatively different behaviour depending on the different moulin input discharge regimes. Using the model, we assess the relative importance of the different measurement quantities, show that frequent measurements of moulin input discharge are indispensable and propose an experiment design to monitor the development of the drainage system over several weeks.

2010 ◽  
Vol 4 (2) ◽  
pp. 663-705
Author(s):  
M. A. Werder ◽  
T. V. Schuler ◽  
M. Funk

Abstract. We present and interpret the results of a series of tracer experiments conducted on an Alpine glacier over a diurnal discharge cycle. For these injections, a moulin was used into which an ice marginal lake was draining, providing a relatively constant discharge. Measured tracer transit speeds show two diurnal maxima and minima. These findings are qualitatively different from existing observations from two series of injections at another site using a moulin fed by supraglacial meltwater with a high diurnal variability, which displayed one diurnal maximum and minimum. We use a simple two-component model of the glacier drainage system, comprising a moulin and a channel element, to simulate the measured transit speeds for all three injection series. The model successfully reproduces all the observations and shows that the same underlying processes can produce the qualitatively different behaviour depending on the different moulin input discharge regimes. Using the model, we asses the relative importance of the different measurement parameters, show that frequent measurements of moulin input discharge are indispensable and propose an experiment design to monitor the development of the drainage system over several weeks.


1993 ◽  
Vol 39 (132) ◽  
pp. 216-222 ◽  
Author(s):  
Scott A. Lecce

AbstractA mass-balance approach using hourly discharge and electrical conductivity values measured over a 10 d period during the ablation season was used to separate englacial and subglacial components of the total meltwater discharge from a small alpine glacier in the Sierra Nevada, California, U.S.A. Symmetrical diurnal hydrographs indicate that little delay occurred as water was tranferred through the drainage system. Electrical conductivity (which varied inversely with proglacial discharge) increased abruptly at each daily conductivity maximum, and cross-correlation analysis indicated that subglacial discharge peaked on the rising limb of the englacial hydrograph (about 2 h prior to the englacial peak). This suggests that a translatory flow process operates in which increased water pressure in the englacial system on the rising limb of the diurnal-discharge cycle forced subglacial water from beneath the glacier in advance of short residence-time meltwater. Net radiation dominated the energy balance at the glacier surface, explaining 86% of the variance in proglacial discharge, which was dominated by the englacial flow component.


1993 ◽  
Vol 39 (132) ◽  
pp. 216-222 ◽  
Author(s):  
Scott A. Lecce

AbstractA mass-balance approach using hourly discharge and electrical conductivity values measured over a 10 d period during the ablation season was used to separate englacial and subglacial components of the total meltwater discharge from a small alpine glacier in the Sierra Nevada, California, U.S.A. Symmetrical diurnal hydrographs indicate that little delay occurred as water was tranferred through the drainage system. Electrical conductivity (which varied inversely with proglacial discharge) increased abruptly at each daily conductivity maximum, and cross-correlation analysis indicated that subglacial discharge peaked on the rising limb of the englacial hydrograph (about 2 h prior to the englacial peak). This suggests that a translatory flow process operates in which increased water pressure in the englacial system on the rising limb of the diurnal-discharge cycle forced subglacial water from beneath the glacier in advance of short residence-time meltwater. Net radiation dominated the energy balance at the glacier surface, explaining 86% of the variance in proglacial discharge, which was dominated by the englacial flow component.


GeroPsych ◽  
2013 ◽  
Vol 26 (3) ◽  
pp. 185-199 ◽  
Author(s):  
Christina Röcke ◽  
Annette Brose

Whereas subjective well-being remains relatively stable across adulthood, emotional experiences show remarkable short-term variability, with younger and older adults differing in both amount and correlates. Repeatedly assessed affect data captures both the dynamics and stability as well as stabilization that may indicate emotion-regulatory processes. The article reviews (1) research approaches to intraindividual affect variability, (2) functional implications of affect variability, and (3) age differences in affect variability. Based on this review, we discuss how the broader literature on emotional aging can be better integrated with theories and concepts of intraindividual affect variability by using appropriate methodological approaches. Finally, we show how a better understanding of affect variability and its underlying processes could contribute to the long-term stabilization of well-being in old age.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


1995 ◽  
Vol 41 (138) ◽  
pp. 217-231 ◽  
Author(s):  
Jack Kohler

AbstractTwo experiments were conducted on the drainage system beneath the Lower part of the ablation zone of Storglaciären, a small valley glacier in northern Sweden. In the first experiment, over 70 tracer tests were performed in a cluster of moulins during a 1 month period, at sub-daily intervals. In the second experiment, input- and output-discharge signals were measured on the supraglacial melt stream emptying into a moulin and on the proglacial stream to which the moulin drains. The data from these two experiments are used in an idealized model of the subglacial drainage system to calculate the percentage of the system flowing as an open channel. Results from the tracer experiment suggest that the system is pressurized to within 60-340 m of the snout, while analysis of the discharge data indicates pressurized ronduits to within 0-415 m of the snout.


2021 ◽  
Vol 224 (Suppl 1) ◽  
pp. jeb228031
Author(s):  
Lauren B. Buckley ◽  
Sean D. Schoville ◽  
Caroline M. Williams

ABSTRACTOrganisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.


1983 ◽  
Vol 100 ◽  
pp. 141-142 ◽  
Author(s):  
J. V. Feitzinger ◽  
P. E. Seiden

Spiral structure in galaxies can arise from both dynamic and non dynamic phenomena: spiral density waves and stochastic selfpropagating star formation. The relative importance of these effects is still not known. Deficiences of the original selfpropagating star formation model (where only stars are taken into account) are overcome by explicitly considering the stars embedded in and interacting with a two-component gas (Seiden and Gerola, 1979; Seiden, Schulman and Feitzinger, 1982; Seiden and Gerola, 1982). The two-component gas is essential because it is the means by which we get feedback in the interaction between stars and gas. The coupling between stars and gas regulates and stabilizes star formation in a galaxy. Under proper conditions this model can give good grand design spirals (Fig. 1).


1985 ◽  
Vol 16 (4) ◽  
pp. 181-184
Author(s):  
J. J. Doppegieter ◽  
I. J. Lambrechts

This is the last in a series of four articles. In the first article two price formulae were discussed and in the subsequent two articles two methods of analysis were demonstrated. In this article a third method of analysis concerning the sensitivity of some selected model parameters is presented. Four parameters have been selected, i.e. the allowed profitability rate, the inflation rate, the growth rate, and the statutory tax rate. The value of each factor has been increased and decreased by 10% to test the sensitivity of each. In both price formulae the allowed profitability rate has the highest relative importance, followed by the inflation rate. Furthermore, in price formula A some parameters have no or only a small short-term effect on the internal rate of return, e.g. the statutory tax rate. In addition, the internal rate of return of formula A is generally more volatile to changes in the variables analysed than that of formula B. This type of analysis could be very helpful for negotiations between price/tariff-determining bodies and price-controlled undertakings/industries.


Sign in / Sign up

Export Citation Format

Share Document