scholarly journals Effects of Soil Depth and Moisture, Light, and Neighborhood Competition on the Diameter Growth in an Old Growth Japanese Cedar (Cryptomeria japonica) Stand, Akita, Japan

2016 ◽  
Vol 98 (3) ◽  
pp. 101-107
Author(s):  
Mizuki Inoue ◽  
Yuichi Ishikawa ◽  
Kazuhiko Hoshizaki ◽  
Fumiaki Takakai ◽  
Michinari Matsushita ◽  
...  
Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 344 ◽  
Author(s):  
Keiko Fukumoto ◽  
Tomohiro Nishizono ◽  
Fumiaki Kitahara ◽  
Kazuo Hosoda

Understanding the tree growth process is essential for sustainable forest management. Future yields are affected by various forest management regimes such as thinning; therefore, accurate predictions of tree growth are needed under various thinning intensities. This study compared the accuracy of individual-level distance-independent diameter growth models constructed for different thinning intensities (thinning intensity-dependent multiple models: TDM model) against the model designed to include all thinning intensities (thinning intensity-independent single model: TIS model) to understand how model accuracy is affected by thinning intensity. We used long-term permanent plot data of Japanese cedar (Cryptomeria japonica) stands in Japan, which was gathered from four plots where thinning was conducted at different thinning intensities: (1) intensive (41% and 38% of trees removed at 25 and 37 years old, respectively), (2) moderate (38% and 34%), (3) light (32% and 34%), and (4) no thinning. First, we specified high interpretability distance-independent competition indices, and we compared the model accuracy both in TDM and TIS models. The results show that the relative spacing index was the best competition index both in TDM and TIS models across all thinning intensities, and the differences in the RMSE (Root mean square error) and rRMSE (relative RMSE) in both TDM and TIS models were 0.001–0.01 cm and 0.2–2%, respectively. In the TIS model, rRMSE varied with thinning intensity; the rRMSE was the lowest for moderate thinning intensity (45.8%) and the highest for no thinning (59.4%). In addition, bias values were negative for the TIS model for all thinning intensities. These results suggest that the TIS model could express diameter growth regardless of thinning intensities. However, the rRMSE had varied with thinning intensity and bias had negative values in the TIS model. Therefore, more model improvements are required for accurate predictions of long-term growth of actual Japanese cedar stands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshihiko Nanasato ◽  
Masafumi Mikami ◽  
Norihiro Futamura ◽  
Masaki Endo ◽  
Mitsuru Nishiguchi ◽  
...  

AbstractCryptomeria japonica (Japanese cedar or sugi) is one of the most important coniferous tree species in Japan and breeding programs for this species have been launched since 1950s. Genome editing technology can be used to shorten the breeding period. In this study, we performed targeted mutagenesis using the CRISPR/Cas9 system in C. japonica. First, the CRISPR/Cas9 system was tested using green fluorescent protein (GFP)-expressing transgenic embryogenic tissue lines. Knock-out efficiency of GFP ranged from 3.1 to 41.4% depending on U6 promoters and target sequences. The GFP knock-out region was mottled in many lines, indicating genome editing in individual cells. However, in 101 of 102 mutated individuals (> 99%) from 6 GFP knock-out lines, embryos had a single mutation pattern. Next, we knocked out the endogenous C. japonica magnesium chelatase subunit I (CjChlI) gene using two guide RNA targets. Green, pale green, and albino phenotypes were obtained in the gene-edited cell lines. Sequence analysis revealed random deletions, insertions, and replacements in the target region. Thus, targeted mutagenesis using the CRISPR/Cas9 system can be used to modify the C. japonica genome.


2016 ◽  
Author(s):  
Shoji Noguchi ◽  
Tomonori Kaneko ◽  
Shin'ichi Iida ◽  
Wataru Murakami ◽  
Takanori Shimizu

Abstract. Vegetation and soil determine evapotranspiration, flow regime, and basin storage in forested catchments. We conducted hydrological observations at three nearby catchments (catchments nos. 1, 2, and 3) in the Nagasaka experimental watershed located on the green tuff region in northeast Japan. Diameter-at-breast height (DBH) of all trees > 3 cm DBH was recorded. In addition, we measured soil depth at 170 locations and investigated 45 soil pits. Based on these detailed vegetation and soil measurements, we examined evapotranspiration, flow regime, and basin storage during the no-snow-cover period (May–November). More than 80.9 % of stands in the catchment were comprised of Cryptomeria japonica. Stand volume (122.0 m3 ha−1) and sapwood area (10.7 m2 ha−1) in catchment no. 3 were smaller than those in the other two catchments (no. 1: 255.7 m3 ha−1; 16.0 m2 ha−1, no. 2: 216.5 m3 ha−1; 14.2 m2 ha−1). Consequently, evapotranspiration was lower in catchment no. 3 than that in catchments nos. 1 and no. 2. In addition, low and scanty runoffs in catchment no. 3 were larger than those in nos. 1 and 2. The order of magnitude for soil storage was catchments no. 1 (104.2 mm) 


2015 ◽  
Vol 7 (3) ◽  
pp. 295 ◽  
Author(s):  
Jaechun Lee ◽  
Keun Hwa Lee ◽  
Hye-Sook Lee ◽  
Sung-Chul Hong ◽  
Jeong Hong Kim

Sign in / Sign up

Export Citation Format

Share Document