neighborhood competition
Recently Published Documents





Albert Kim ◽  
David Allen ◽  
Simon Couch

1. Neighborhood competition models are powerful tools to measure the effect of interspecific competition. Statistical methods to ease the application of these models are currently lacking. 2. We present the forestecology package providing methods to i) specify neighborhood competition models, ii) evaluate the effect of competitor species identity using permutation tests, and iii) measure model performance using spatial cross-validation. Following Allen (2020), we implement a Bayesian linear regression neighborhood competition model. 3. We demonstrate the package’s functionality using data from the Smithsonian Conservation Biology Institute’s large forest dynamics plot, part of the ForestGEO global network of research sites. Given ForestGEO’s data collection protocols and data formatting standards, the package was designed with cross-site compatibility in mind. We highlight the importance of spatial cross-validation when interpreting model results. 4. The package features i) tidyverse-like structure whereby verb-named functions can be modularly “piped” in sequence, ii) functions with standardized inputs/outputs of simple features ‘sf‘ package class, and iii) an S3 object-oriented implementation of the Bayesian linear regression model. These three facts allow for clear articulation of all the steps in the sequence of analysis and easy wrangling and visualization of the geospatial data. Furthermore, while the package only has Bayesian linear regression implemented, the package was designed with extensibility to other methods in mind.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11517
Jia Liu ◽  
Xuejiao Bai ◽  
You Yin ◽  
Wenguang Wang ◽  
Zhiqiang Li ◽  

Background Secondary forests have become the major forest type worldwide. Research on spatial patterns and associations of tree species at different developmental stages may be informative in understanding the structure and dynamic processes of secondary forests. Methods In this study, we used point pattern analysis to analyze the spatial patterns and associations of tree species at seedling, sapling and adult stages in a 4ha plot in the montane secondary temperate forest of northeastern China. Results We found that species showed similar patterns at seedling, sapling and adult stages, and aggregation was the dominant pattern. The spatial patterns of tree species were mainly affected by habitat heterogeneity. In addition, the strength of positive or negative associated pattern among tree species would decrease with developmental stages, which attributed to neighborhood competition and plant size increasing. Conclusions Our results indicated that the spatial patterns and associations of tree species at seedling and sapling stages partly reflected that at adult stage; habitat heterogeneity and neighborhood competition jointly contributed to species coexistence in this secondary forest.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.

2018 ◽  
Vol 422 ◽  
pp. 49-58 ◽  
Gangying Hui ◽  
Ye Wang ◽  
Gongqiao Zhang ◽  
Zhonghua Zhao ◽  
Chao Bai ◽  

Sign in / Sign up

Export Citation Format

Share Document