soil measurements
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Kristina Heidy Kikillus

<p>Worldwide, invasive species are associated with severe ecological and economic impacts. As a group, reptiles are very successful invaders and in some areas where they have established they are responsible for the decline of native fauna and economic disruptions, whilst also posing a threat to human health. Due to its biogeographical isolation and unique evolutionary history, New Zealand is highly susceptible to invasive species. Importation of reptiles into New Zealand is illegal, however over a dozen species of exotic reptile are legally present in captivity and their risk of establishment is unknown. This study investigates their establishment potential and possible impacts by considering 1) the amount of trade and propagule pressure of species, 2) the degree of climate match between their native range and New Zealand, 3) areas that may be suitable for establishment based on physiological models of incubation and development, 4) their ability to transfer pathogens to native fauna and humans, and 5) overall establishment risk. The red-eared slider (Trachemys scripta elegans; RES) is the most common and easily obtained exotic reptile pet in New Zealand, with over 800 sales per annum. The RES is also the species most regularly released into the wild. Climate matching models in this study were developed to minimise false-negative predictions, to generate a suitability score irrespective of the prevalence of species records (allowing species to be easily compared to one another), and incorporated a weighted multimodel average prediction based on the relative importance of climatic variables to each species. These correlative models indicated that the blotched blue-tongue skink (Tiliqua nigrolutea) had the highest degree of climate match with parts of New Zealand, while the common blue-tongue skink (T. scincoides) had the highest proportion of land area predicted to be suitable for establishment. The other 10 species generally had both low climate match scores and limited areas within New Zealand predicted to be suitable. Mechanistic models focus upon environmental influences on physiological processes of a species, such as development and growth. Degree-day models, combined with soil measurements in potential reptile nesting sites in New Zealand, were utilised to determine if environmental conditions were suitable for the successful reproduction of oviparous exotic reptiles. These models predicted that the New Zealand environment meets the minimum thermal requirements for the incubation of eggs of RES, snake-neck turtles (Chelodina longicollis), and Reeves turtles (Chinemys reevesii). While prevalence of Salmonella in exotic reptiles is higher than that of native reptiles, it is considerably lower than that of exotic reptiles overseas. All serovars identified in this study had been previously reported both in humans and reptiles in New Zealand. The overall risk assessment for 12 species of exotic reptile kept in captivity in New Zealand indicates that blotched blue-tongue skinks and RES pose the highest establishment risk. Blotched blue-tongue skinks are allegedly only present in zoos. Therefore, based on propagule pressure, RES pose the highest establishment risk and efforts should focus on minimising release events and removing feral individuals from the New Zealand environment. In summary, at least eight species of exotic reptile legally traded within New Zealand are predicted to be capable of surviving in a portion of the New Zealand environment and at least three species have the potential to successfully breed in warmer microclimates. However, further research involving climatic tolerances and breeding potential (i.e., soil moisture content, juvenile survival, sex ratio, and predicted climate change) is recommended. Public education and possible regulations imposed on the New Zealand exotic reptile trade may prevent introductions of these species into the local environment and still allow selected species to be enjoyed by the New Zealand public. The methods developed in this study may be easily applied to other species and other geographic regions, allowing investigation into the establishment risk of alien species. This may help guide control and management efforts and help stem the tide of the growing problem of invasive species.</p>


2021 ◽  
Author(s):  
◽  
Kristina Heidy Kikillus

<p>Worldwide, invasive species are associated with severe ecological and economic impacts. As a group, reptiles are very successful invaders and in some areas where they have established they are responsible for the decline of native fauna and economic disruptions, whilst also posing a threat to human health. Due to its biogeographical isolation and unique evolutionary history, New Zealand is highly susceptible to invasive species. Importation of reptiles into New Zealand is illegal, however over a dozen species of exotic reptile are legally present in captivity and their risk of establishment is unknown. This study investigates their establishment potential and possible impacts by considering 1) the amount of trade and propagule pressure of species, 2) the degree of climate match between their native range and New Zealand, 3) areas that may be suitable for establishment based on physiological models of incubation and development, 4) their ability to transfer pathogens to native fauna and humans, and 5) overall establishment risk. The red-eared slider (Trachemys scripta elegans; RES) is the most common and easily obtained exotic reptile pet in New Zealand, with over 800 sales per annum. The RES is also the species most regularly released into the wild. Climate matching models in this study were developed to minimise false-negative predictions, to generate a suitability score irrespective of the prevalence of species records (allowing species to be easily compared to one another), and incorporated a weighted multimodel average prediction based on the relative importance of climatic variables to each species. These correlative models indicated that the blotched blue-tongue skink (Tiliqua nigrolutea) had the highest degree of climate match with parts of New Zealand, while the common blue-tongue skink (T. scincoides) had the highest proportion of land area predicted to be suitable for establishment. The other 10 species generally had both low climate match scores and limited areas within New Zealand predicted to be suitable. Mechanistic models focus upon environmental influences on physiological processes of a species, such as development and growth. Degree-day models, combined with soil measurements in potential reptile nesting sites in New Zealand, were utilised to determine if environmental conditions were suitable for the successful reproduction of oviparous exotic reptiles. These models predicted that the New Zealand environment meets the minimum thermal requirements for the incubation of eggs of RES, snake-neck turtles (Chelodina longicollis), and Reeves turtles (Chinemys reevesii). While prevalence of Salmonella in exotic reptiles is higher than that of native reptiles, it is considerably lower than that of exotic reptiles overseas. All serovars identified in this study had been previously reported both in humans and reptiles in New Zealand. The overall risk assessment for 12 species of exotic reptile kept in captivity in New Zealand indicates that blotched blue-tongue skinks and RES pose the highest establishment risk. Blotched blue-tongue skinks are allegedly only present in zoos. Therefore, based on propagule pressure, RES pose the highest establishment risk and efforts should focus on minimising release events and removing feral individuals from the New Zealand environment. In summary, at least eight species of exotic reptile legally traded within New Zealand are predicted to be capable of surviving in a portion of the New Zealand environment and at least three species have the potential to successfully breed in warmer microclimates. However, further research involving climatic tolerances and breeding potential (i.e., soil moisture content, juvenile survival, sex ratio, and predicted climate change) is recommended. Public education and possible regulations imposed on the New Zealand exotic reptile trade may prevent introductions of these species into the local environment and still allow selected species to be enjoyed by the New Zealand public. The methods developed in this study may be easily applied to other species and other geographic regions, allowing investigation into the establishment risk of alien species. This may help guide control and management efforts and help stem the tide of the growing problem of invasive species.</p>


Author(s):  
Timothy L Porter ◽  
◽  
TR Dillingham ◽  

We have taken near-surface soil measurements of the gases CO2 , CH4 , H2 O and isoprene in several regions of the Coconino National Forest, Arizona, USA. Sets of measurements were taken both prior to the start of the seasonal monsoon season, in addition to while the monsoon season was underway. We have also compared the current monsoon season readings with readings taken at the same locations four years prior. For CO2, the relative level in the pristine forest soil is just under 3.7 percent lower than that measured in 2017, while the CO2 relative levels for the thinned and logged sites are lower by 13.5 and 5.4 percent, respectively. Even accounting for small increases in forest vegetation, these lower readings appear to be correlated to lower overall soil H2 O concentrations. The pristine CH4 relative concentration in 2021 is 9.6% higher and the thinned CH4 level is 19% higher. For the logged region, the measured methane level is over 70% lower than in 2017, but still approximately triple the methane level as seen in the other forest areas. We conclude that this result also may also be correlated to lower measured H2 O levels in the soils.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1222
Author(s):  
Thomas Sepperer ◽  
Alexander Petutschnigg ◽  
Konrad Steiner

With the increasing demand for food worldwide, the use of fertilizers in the agricultural industry has grown. Natural fertilizers derived from the use of animal manure slurry, especially cattle and cow, are responsible for 40% of the agricultural ammonia emission. The EU defined the goal to reduce NH3 emission drastically until 2030, yet until today an overall increase has been observed, making it more difficult to reach the target. In this study, we used two by-products from the dairy industry, namely flushing milk and acidic whey, to lower the pH of cattle manure slurry and therefore mitigate the loss of nitrogen in the form of ammonia into the atmosphere, making it available in the soil. Measurements of pH, ammonium nitrogen, total Kjeldahl nitrogen, and lactic acid bacteria colonies were conducted in a lab-scale experiment to test the hypothesis. Afterwards, pH measurements were conducted on bigger samples. We found that whey effectively reduced the pH of manure below 5, therefore moving the ammonia/ammonium equilibrium strongly towards ammonium. Flushing milk on the other hand lowered the pH to a smaller extent, yet allowed for faster hydrolysis of urea into ammonium. The findings in this study present a suitable and environmentally friendly approach to help reach the climate goals set by the EU by using by-products from the same industry branch, therefore being a suitable example of circular economy.


2021 ◽  
Vol 11 (17) ◽  
pp. 7875
Author(s):  
Vincenzo Sapia ◽  
Valerio Materni ◽  
Federico Florindo ◽  
Marco Marchetti ◽  
Andrea Gasparini ◽  
...  

A multi-parametric approach that involves the use of different geophysical methods coupled with geochemical data allowed us to identify undiscovered archeological burials in a funerary area of the Grotte di Castro Etruscan settlement. In particular, we tested the suitability of the capacitive resistivity method and the presence of Radon in soil for the identification of burials calibrating their outcomes over coincident survey profiles with standard geophysical techniques routinely applied for archaeological prospections. Soil Radon data were acquired both in a grid and along a profile to highlight anomalous gas concentrations, whereas electrical resistivity and ground-penetrating radar measurements were conducted on overlapping profiles to depict the electrical and electromagnetic subsurface distribution. Data integration showed a series of anomalies, suggesting the presence of multiple burials starting from a depth of approximately 1.5 m below the terrain surface. Slight anomalies of Radon in the soil were found to correspond to most of the recovered geophysical ones. Our results pointed out the effectiveness of geophysical method integration in archeological prospecting with the novelty of the joint use of Radon in soil measurements and capacitive resistivity tomography. The latter provided reliable results and can be considered as a standalone technique in archaeological surveys.


2021 ◽  
Author(s):  
Max Roberts ◽  
Ian Colwell ◽  
Clara Chew ◽  
Rashmi Shah ◽  
Stephen Lowe

GNSS reflection measurements in the form of delay-Doppler maps (DDM) from the CYGNSS constellation can be used to complement soil measurements from the SMAP Mission, which has a revisit rate too slow for some hydrological/meteorological studies. The standard approach, which only considers the peak value of the DDM, is subject to a significant amount of uncertainty due to the fact that the peak value of the DDM is not only affected by soil moisture, but also complex topography, inundation, and overlying vegetation. We hypothesize that information from the entire 2D DDM could help decrease uncertainty under these conditions. The application of deep learning based techniques has the potential to extract additional information from the entire DDM, while simultaneously allowing for incorporation of additional contextual information from external datasets. This work explored the data-driven approach of convolutional neural networks (CNNs) to determine complex relationships between the reflection measurement and surface parameters, providing a mechanism to achieve improved global soil moisture estimates. A CNN was trained on CYGNSS DDMs and contextual ancillary datasets as inputs, with aligned SMAP soil moisture values as the targets. Data was aggregated into training sets, and a CNN was developed to process them. Predictions from the CNN were studied using an unbiased subset of samples, showing strong correlation with the SMAP target values. With this network, a soil moisture product was generated using DDMs from 2018 which is generally comparable to existing global soil moisture products, but shows potential advantages in spatial resolution and coverage over regions where SMAP does not perform well.


2021 ◽  
Author(s):  
Max Roberts ◽  
Ian Colwell ◽  
Clara Chew ◽  
Rashmi Shah ◽  
Stephen Lowe

GNSS reflection measurements in the form of delay-Doppler maps (DDM) from the CYGNSS constellation can be used to complement soil measurements from the SMAP Mission, which has a revisit rate too slow for some hydrological/meteorological studies. The standard approach, which only considers the peak value of the DDM, is subject to a significant amount of uncertainty due to the fact that the peak value of the DDM is not only affected by soil moisture, but also complex topography, inundation, and overlying vegetation. We hypothesize that information from the entire 2D DDM could help decrease uncertainty under these conditions. The application of deep learning based techniques has the potential to extract additional information from the entire DDM, while simultaneously allowing for incorporation of additional contextual information from external datasets. This work explored the data-driven approach of convolutional neural networks (CNNs) to determine complex relationships between the reflection measurement and surface parameters, providing a mechanism to achieve improved global soil moisture estimates. A CNN was trained on CYGNSS DDMs and contextual ancillary datasets as inputs, with aligned SMAP soil moisture values as the targets. Data was aggregated into training sets, and a CNN was developed to process them. Predictions from the CNN were studied using an unbiased subset of samples, showing strong correlation with the SMAP target values. With this network, a soil moisture product was generated using DDMs from 2018 which is generally comparable to existing global soil moisture products, but shows potential advantages in spatial resolution and coverage over regions where SMAP does not perform well.


2021 ◽  
Author(s):  
Markus Jesswein

A genetic algorithm (GA) was developed to improve predictions for the ultimate axial capacity of driven piles in Ontario soils. Challenges arise to accurately predict the ultimate capacity due to many influential factors, such as the ground conditions, installation method, and pile geometry. A total of 43 piles (H or pipe piles) were collected from the Ministry of Transportation of Ontario. Side and tip resistances were extracted from piles subjected to extension and compression load tests. The soil measurements and pile resistances were regressed with a statistical analysis and GA, and the developed relationships were compared to existing design methods. On average, existing design methods overestimated the capacity by a factor of 1.16 to 3.00. The proposed correlations were slightly conservative with the capacity but provided errors within ± 30 % of the measured side resistance. The new design methods from the GA offer substantial improvements for pile design


2021 ◽  
Author(s):  
Markus Jesswein

A genetic algorithm (GA) was developed to improve predictions for the ultimate axial capacity of driven piles in Ontario soils. Challenges arise to accurately predict the ultimate capacity due to many influential factors, such as the ground conditions, installation method, and pile geometry. A total of 43 piles (H or pipe piles) were collected from the Ministry of Transportation of Ontario. Side and tip resistances were extracted from piles subjected to extension and compression load tests. The soil measurements and pile resistances were regressed with a statistical analysis and GA, and the developed relationships were compared to existing design methods. On average, existing design methods overestimated the capacity by a factor of 1.16 to 3.00. The proposed correlations were slightly conservative with the capacity but provided errors within ± 30 % of the measured side resistance. The new design methods from the GA offer substantial improvements for pile design


2021 ◽  
Author(s):  
Antoine Gazaix ◽  
Patrick GRILLAS ◽  
Guillaume PAPUGA ◽  
Hugo FONTES ◽  
Florent Sabatier ◽  
...  

Abstract The ecological niche defines the favorable range of a species in a multidimensional space of ecological factors that determine the presence and function of individuals. This fundamental concept in ecology is widely used to understand plant species coexistence and segregation. In this study we test for ecological differentiation among six annual Lythrum species that are characteristic of temporary pools in the South of France, where they either coexist or occur separately. We first analysed the co-occurrence of species at two different geographical scales: cluster analyses of species presence in 10 km grid cells and coexistence in 0.25m2 quadrats within populations of each species. Second, for three to nine populations of each species, we quantified a range of biotic and abiotic parameters using point contacts and soil measurements in three 0.25m2 quadrats per population. We performed PCA on all variables, and analysed each variable separately to compare the ecological niche features of the six species. A phenological index was assessed for the plant community of each site. We detected highly localised niche differentiation in terms of soil pH (all species) and for a range of variables among pairs of species. The six species also showed marked differences in flowering period relative to the mean and variability of flowering time in their local community. These fine-scaled niche differences are associated with phylogenetic distances among species and may contribute to species’ coexistence. These results are integrated in a conservation management plan for the habitat of the rarest species in this group.


Sign in / Sign up

Export Citation Format

Share Document