Exploration of the unification of fields

2019 ◽  
Vol 32 (3) ◽  
pp. 399-410
Author(s):  
Ge Guangzhou

This article may be deemed as an exploration on the unification of fields as well as a discussion of the completeness in physics. This author tended to support the viewpoint of Einstein and believed that the Uncertainty Principle should be in itself incomplete, and that the representation of the state function ψ should not be complete in quantum mechanics. Following a series of discussions, including the hypothesis of a new quantum, the relativity of electromagnetic field, and the general equivalence principle, this author proposes here a new field equation called Hamilton’s tensor equation (HTE). Acting as the complete presentation of Einstein’s field equation and as an extension of Hamilton’s principle, what this new field equation (HTE) has revealed is that the “virtuality” of space‐time, rather than its curvature, is what determines the distribution and movement of matter and energy. Based on this new field equation (HTE), the author has extended the study to include the unification of fields, a model of new particle, and the phenomenon of black hole.

2010 ◽  
Vol 19 (12) ◽  
pp. 2003-2009 ◽  
Author(s):  
POURIA PEDRAM

Various candidates of quantum gravity such as string theory, loop quantum gravity and black hole physics all predict the existence of a minimum observable length which modifies the Heisenberg uncertainty principle to the so-called generalized uncertainty principle (GUP). This approach results from the modification of the commutation relations and changes all Hamiltonians in quantum mechanics. In this paper, we present a class of physically acceptable solutions for a general commutation relation without directly solving the corresponding generalized Schrödinger equations. These solutions satisfy the boundary conditions and exhibit the effect of the deformed algebra on the energy spectrum. We show that this procedure prevents us from doing equivalent but lengthy calculations.


2020 ◽  
pp. 133-156
Author(s):  
Jim Baggott

From the outset, Heisenberg had resolved to eliminate classical space-time pictures involving particles and waves from the quantum mechanics of the atom. He had wanted to focus instead on the properties actually observed and recorded in laboratory experiments, such as the positions and intensities of spectral lines. Alone in Copenhagen in February 1927, he now pondered on the significance and meaning of such experimental observables. Feeling the need to introduce at least some form of ‘visualizability’, he asked himself some fundamental questions, such as: What do we actually mean when we talk about the position of an electron? He went on to discover the uncertainty principle: the product of the ‘uncertainties’ in certain pairs of variables—called complementary variables—such as position and momentum cannot be smaller than Planck’s constant h (now h / 4π‎).


Author(s):  
David Escors ◽  
Grazyna Kochan

General relativity is a theory for gravitation based on Riemannian geometry, difficult to compatibilize with quantum mechanics. This is evident in relativistic problems in which quantum effects cannot be discarded. For example in quantum gravity, gravitation of zero-point energy or events close to a black hole singularity. Here, we set up a mathematical model to select general relativity geodesics according to compatibility with the uncertainty principle. To achieve this, we derived a geometric expression of the uncertainty principle (GeUP). This formulation identified proper space-time length with Planck length by a geodesic-derived scalar. GeUP imposed a minimum allowed value for the interval of proper space-time which depended on the particular space-time geometry. GeUP forced the introduction of a “zero-point” curvature perturbation over flat Minkowski space, caused exclusively by quantum uncertainty but not to gravitation. When applied to the Schwarzschild metric and choosing radial-dependent geodesics, our mathematical model identified a particle exclusion zone close to the singularity, similar to calculations by loop quantum gravity. For a 2 black hole merger, this exclusion zone was shown to have a radius that cannot go below a value proportional to the energy/mass of the incoming black hole multiplied by Planck length.


Author(s):  
Demetris Nicolaides

Parmenides’s insinuation of an unchanging universe is assertively supported by Zeno with various logical paradoxes that question the very nature of plurality, space, time, and the reality of apparent motion. The dichotomy is his most famous paradox. To begin a trip, say, from here to the door, a traveler must travel the first half of it, but before she does that she must travel half of the first half, and in fact half of that, ad infinitum. Since there will always exist a smaller first half to be traveled first, Zeno questions whether a traveler can ever even start a trip. Zeno’s analysis is logical; on the other hand, things everywhere appear to be moving. Hence, either Zeno’s reasoning is wrong or appearances are deceptive. Empowered by the uncertainty principle of quantum mechanics, it will be argued that, at best, the phenomenon of motion is experimentally unverifiable!


2001 ◽  
Vol 16 (05) ◽  
pp. 945-955 ◽  
Author(s):  
TAMIAKI YONEYA

We analyze the nature of space-time nonlocality in string theory. After giving a brief overview on the conjecture of the space-time uncertainty principle, a (semi-classical) reformulation of string quantum mechanics, in which the dynamics is represented by the noncommutativity between temporal and spatial coordinates, is outlined. The formalism is then compared to the space-time noncommutative field theories associated with nonzero electric B-fields.


Author(s):  
David Escors ◽  
Grazyna Kochan

General relativity is a theory for gravitation based on Riemannian geometry, difficult to compatibilize with quantum mechanics. This is evident in relativistic problems in which quantum effects cannot be discarded. For example in quantum gravity, gravitation of zero-point energy or events close to a black hole singularity. Here, we set up a mathematical model to select general relativity geodesics according to compatibility with the uncertainty principle. To achieve this, we derived a geometric expression of the uncertainty principle (GUP). This formulation identified proper space-time length with Planck length by a geodesic-derived scalar. GUP imposed a minimum allowed value for the interval of proper space-time which depended on the particular space-time geometry. GUP forced the introduction of a “zero-point” curvature perturbation over flat Minkowski space, caused exclusively by quantum uncertainty but not to gravitation. When applied to the Schwarzschild metric and choosing radial-dependent geodesics, our mathematical model identified a particle exclusion zone close to the singularity, similar to calculations by loop quantum gravity. For a 2 black hole merger, this exclusion zone was shown to have a radius that cannot go below a value proportional to the energy/mass of the incoming black hole multiplied by Planck length.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050130
Author(s):  
Homa Shababi ◽  
Andrea Addazi

We explore the possibility to extend the Heisenberg’s uncertainty principle to a nonlinear extension of the quantum algebra related to a functional operator of the momenta as [Formula: see text]. We show that such an extension of quantum mechanics is intimately connected to the non-commutative space-time algebra and the Lorentz symmetry deformations. We show that a large class of [Formula: see text] models can introduce superluminal modes in the quantized theories. We also show that the Hořava–Lifshitz theory is related to a large class of [Formula: see text] Quantum Mechanics.


Sign in / Sign up

Export Citation Format

Share Document