Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility

2016 ◽  
Vol 26 (3) ◽  
pp. 549-557 ◽  
Author(s):  
Bora Kim ◽  
Geun Cheol Song ◽  
Choong-Min Ryu
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 471
Author(s):  
Alberto Oliveros-Bastidas ◽  
José M. G. Molinillo ◽  
Francisco A. Macias ◽  
Nuria Chinchilla

6-Methoxy-2-benzoxazolinone (MBOA) is an allelochemical that is found in Poaceae and is generally associated with monocotyledon species. This compound is formed from the glycosylated form of 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (Gly-DIMBOA) by a two-stage degradation process. The MBOA detoxification capacity of two weed species, namely Echinochloa crus-galli and Lolium rigidum, and a resistant biotype of Lolium rigidum (SLR31) was studied both qualitatively and quantitatively. The product of metabolism is similar for both weed species. This finding indicates that these weeds probably metabolize xenobiotics by an identical route, since the product detected was the same in both cases. Kinetic studies on the absorption and translocation to the shoot showed differences in these processes depending on the species. The analysis of treated plants, which were subsequently transplanted to a growth medium without xenobiotic compound, showed that the weeds studied are capable of transmitting the previously absorbed compound to the medium by root exudation. The results show that this process is another defense mechanism of plants facing external threats.


Author(s):  
Junnosuke Otaka ◽  
Guntur Venkata Subbarao ◽  
Hiroshi Ono ◽  
Tadashi Yoshihashi

AbstractTo control agronomic N losses and reduce environmental pollution, biological nitrification inhibition (BNI) is a promising strategy. BNI is an ecological phenomenon by which certain plants release bioactive compounds that can suppress nitrifying soil microbes. Herein, we report on two hydrophobic BNI compounds released from maize root exudation (1 and 2), together with two BNI compounds inside maize roots (3 and 4). On the basis of a bioassay-guided fractionation method using a recombinant nitrifying bacterium Nitrosomonas europaea, 2,7-dimethoxy-1,4-naphthoquinone (1, ED50 = 2 μM) was identified for the first time from dichloromethane (DCM) wash concentrate of maize root surface and named “zeanone.” The benzoxazinoid 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one (HDMBOA, 2, ED50 = 13 μM) was isolated from DCM extract of maize roots, and two analogs of compound 2, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (HMBOA, 3, ED50 = 91 μM) and HDMBOA-β-glucoside (4, ED50 = 94 μM), were isolated from methanol extract of maize roots. Their chemical structures (1–4) were determined by extensive spectroscopic methods. The contributions of these four isolated BNI compounds (1–4) to the hydrophobic BNI activity in maize roots were 19%, 20%, 2%, and 4%, respectively. A possible biosynthetic pathway for zeanone (1) is proposed. These results provide insights into the strength of hydrophobic BNI activity released from maize root systems, the chemical identities of the isolated BNIs, and their relative contribution to the BNI activity from maize root systems.


Science ◽  
1919 ◽  
Vol 49 (1255) ◽  
pp. 70-71
Author(s):  
Ernest Shaw Reynolds
Keyword(s):  

2014 ◽  
Vol 11 (13) ◽  
pp. 3661-3683 ◽  
Author(s):  
C. Buendía ◽  
S. Arens ◽  
T. Hickler ◽  
S. I. Higgins ◽  
P. Porada ◽  
...  

Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.


Pedosphere ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Katja BOLDT-BURISCH ◽  
Bernd Uwe SCHNEIDER ◽  
M. Anne NAETH ◽  
Reinhard F. HÜTTL

Sign in / Sign up

Export Citation Format

Share Document