scholarly journals On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales

2014 ◽  
Vol 11 (13) ◽  
pp. 3661-3683 ◽  
Author(s):  
C. Buendía ◽  
S. Arens ◽  
T. Hickler ◽  
S. I. Higgins ◽  
P. Porada ◽  
...  

Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological timescales under different environmental settings.

2013 ◽  
Vol 10 (12) ◽  
pp. 19347-19407
Author(s):  
C. Buendía ◽  
S. Arens ◽  
T. Hickler ◽  
S. I. Higgins ◽  
P. Porada ◽  
...  

Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological time scales under different environmental settings.


2008 ◽  
Vol 190 (6) ◽  
pp. 1997-2003 ◽  
Author(s):  
David E. Whitworth ◽  
Antony B. Holmes ◽  
Alistair G. Irvine ◽  
David A. Hodgson ◽  
David J. Scanlan

ABSTRACT In many organisms, phosphatase expression and phosphate (P) uptake are coordinately regulated by the Pho regulon. In Myxococcus xanthus P limitation initiates multicellular development, a process associated with changes in phosphatase expression. We sought here to characterize the link between P acquisition and development in this bacterium, an organism capable of preying upon other microorganisms as a sole nutrient source. M. xanthus seems to possess no significant internal P stores, as reducing the P concentration to less than 10 μM retarded growth within one doubling time. Pyrophosphate, polyphosphate, and glyceraldehyde-3-phosphate could support growth as sole P sources, although many other P-containing biomolecules could not (including nucleic acids and phospholipids). Several Pho regulon promoters were found to be highly active during vegetative growth, and P limitation specifically induced pstSCAB, AcPA1, and pho3 promoter activity and repressed pit expression. Enhanced pstSCAB and pho3 promoter activities in a phoP4 mutant (in the presence of high and low concentrations of P) suggested that PhoP4 acts as a repressor of these genes. However, in a phoP4 background, the activities of pstSCAB remained P regulated, suggesting that there is additional regulation by a P-sensitive factor. Initiation of multicellular development caused immediate down-regulation of Pho regulon genes and caused pstSCAB and pho3 promoter activities to become P insensitive. Hence, P acquisition components of the M. xanthus Pho regulon are regulated by both P availability and development, with developmental down-regulation overriding up-regulation by P limitation. These observations suggest that when development is initiated, subsequent changes in P availability become irrelevant to the population, which presumably has sufficient intrinsic P to ensure completion of the developmental program.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 191 ◽  
Author(s):  
Patricia Poblete-Grant ◽  
Philippe Biron ◽  
Thierry Bariac ◽  
Paula Cartes ◽  
María de La Luz Mora ◽  
...  

To maintain grassland productivity and limit resource depletion, scarce mineral P (phosphorus) fertilizers must be replaced by alternative P sources. The effect of these amendments on plant growth may depend on physicochemical soil parameters, in particular pH. The objective of this study was to investigate the effect of soil pH on biomass production, P use efficiency, and soil P forms after P amendment application (100 mg kg−1 P) using poultry manure compost (PM), rock phosphate (RP), and their combination (PMRP). We performed a growth chamber experiment with ryegrass plants (Lolium perenne) grown on two soil types with contrasting pH under controlled conditions for 7 weeks. Chemical P fractions, biomass production, and P concentrations were measured to calculate plant uptake and P use efficiency. We found a strong synergistic effect on the available soil P, while antagonistic effects were observed for ryegrass production and P uptake. We conclude that although the combination of PM and RP has positive effects in terms of soil P availability, the combined effects of the mixture must be taken into account and further evaluated for different soil types and grassland plants to maximize synergistic effects and to minimize antagonistic ones.


2016 ◽  
Vol 53 (1) ◽  
pp. 1-11 ◽  
Author(s):  
FERNANDO C. BACHIEGA ZAMBROSI ◽  
RAFAEL VASCONCELOS RIBEIRO ◽  
EDUARDO CARUSO MACHADO ◽  
JÚLIO CÉSAR GARCIA

SUMMARYThe shoot regrowth vigour of sugarcane varieties having contrasting phosphorus (P) efficiency was evaluated under varying soil P availability. The P-inefficient (IAC91–1099 and IACSP94–2101) and -efficient (IACSP94–2094 and IACSP95–5000) sugarcane varieties were grown under low (25 mg P kg−1 soil) or high (400 mg P kg−1 soil) P supply at planting. After 90 days (first cycle of growth), the shoots were harvested and regrowth was studied 70–75 days later by evaluating photosynthesis, leaf area formation, biomass production and P uptake. The shoot dry matter (DM) of sugarcane regrowth subjected to a low P supply was genotype-dependent, with the P-efficient varieties exhibiting greater values than the inefficient ones. This result was explained by the greater efficiency of IACSP94–2094 and IACSP95–5000 in acquiring P rather than P utilization efficiency for shoot biomass production. The root P stored during the first cycle of growth would represent only a minor fraction (< 20%) of the total P content in the shoots at the end of the regrowth period. Thus, we argue that the improved shoot P uptake of the P-efficient varieties was related to their ability to sustain P acquisition after harvesting rather than to the remobilization of root P reserves. Moreover, our data revealed that net CO2 assimilation per leaf area was not associated with differential performance among varieties under P deficiency, suggesting a more critical role of total leaf area in photosynthate supply for sugarcane regrowth. In conclusion, sugarcane regrowth is improved in P-efficient varieties under P deficiency conditions, a finding of practical relevance as such ability might benefit the productivity and the longevity of sugarcane ratoons in low P tropical soils.


1992 ◽  
Vol 49 (4) ◽  
pp. 694-700 ◽  
Author(s):  
William F. James ◽  
William D. Taylor ◽  
John W. Barko

Seasonal production of Ceratium hirundinella and its diel migratory patterns were examined in relation to phosphorus (P) availability in eutrophic Eau Galle Reservoir, Wisconsin (USA). During mid-June, hypolimnetic P gradients (0.030–1.045 mg∙L−1) developed as internal P loading was high (14.7–18.0 mg∙m−2∙d−1). Ceratium migrated as much as 4 m into the upper hypolimnion at night. Subsequent increases in Ceratium biomass, gross primary productivity, and chlorophyll a indicated retrieval of hypolimnetic P for production. During early July, anoxia restricted vertical migration of Ceratium into the hypolimnion. Surplus cellular P was low during this period, while alkaline phosphatase activity increased to a maximum, suggesting P limitation of Ceratium production. During late July and August, P-rich interflows from the Eau Galle River entered the reservoir at the base of the epilimnion. Ceratium migrated into these interflows at night, with corresponding increases and decreases in surplus cellular P and alkaline phosphatase activity, respectively. Ceratium production increased to a maximum in early September, following these periods of high external P input. These results directly support the hypothesis that Ceratium can access multiple P sources through vertical migration.


2009 ◽  
Vol 6 (5) ◽  
pp. 9891-9944 ◽  
Author(s):  
Y. P. Wang ◽  
R. M. Law ◽  
B. Pak

Abstract. Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorous (P), in additional to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2526 Gt C, and the C fractions in plant, litter and soil organic matter are 21, 6 and 73%. The total amount of N is 124 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization that has not been included in any other global models previously. The total amount of P is 26 Gt P in the terrestrial biosphere, 17% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 40 Gt P, with 60% in soil organic matter, otherwise. This model was used to derive the global distribution of N or P limitation on the productivity of terrestrial ecosystems. Our model predicts that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.


2010 ◽  
Vol 7 (7) ◽  
pp. 2261-2282 ◽  
Author(s):  
Y. P. Wang ◽  
R. M. Law ◽  
B. Pak

Abstract. Carbon storage by many terrestrial ecosystems can be limited by nutrients, predominantly nitrogen (N) and phosphorus (P), in addition to other environmental constraints, water, light and temperature. However the spatial distribution and the extent of both N and P limitation at the global scale have not been quantified. Here we have developed a global model of carbon (C), nitrogen (N) and phosphorus (P) cycles for the terrestrial biosphere. Model estimates of steady state C and N pool sizes and major fluxes between plant, litter and soil pools, under present climate conditions, agree well with various independent estimates. The total amount of C in the terrestrial biosphere is 2767 Gt C, and the C fractions in plant, litter and soil organic matter are 19%, 4% and 77%. The total amount of N is 135 Gt N, with about 94% stored in the soil, 5% in the plant live biomass, and 1% in litter. We found that the estimates of total soil P and its partitioning into different pools in soil are quite sensitive to biochemical P mineralization. The total amount of P (plant biomass, litter and soil) excluding occluded P in soil is 17 Gt P in the terrestrial biosphere, 33% of which is stored in the soil organic matter if biochemical P mineralization is modelled, or 31 Gt P with 67% in soil organic matter otherwise. This model was used to derive the global distribution and uncertainty of N or P limitation on the productivity of terrestrial ecosystems at steady state under present conditions. Our model estimates that the net primary productivity of most tropical evergreen broadleaf forests and tropical savannahs is reduced by about 20% on average by P limitation, and most of the remaining biomes are N limited; N limitation is strongest in high latitude deciduous needle leaf forests, and reduces its net primary productivity by up to 40% under present conditions.


2021 ◽  
Author(s):  
Xiucheng Liu ◽  
Yuting Wang ◽  
Shuangri Liu ◽  
Miao Liu

Abstract Aims Phosphorus (P) availability and efficiency are especially important for plant growth and productivity. However, the sex-specific P acquisition and utilization strategies of dioecious plant species under different N forms are not clear. Methods This study investigated the responsive mechanisms of dioecious Populus cathayana females and males based on P uptake and allocation to soil P supply under N deficiency, nitrate (NO3 −) and ammonium (NH4 +) supply. Important Findings Females had a greater biomass, root length density (RLD), specific root length (SRL) and shoot P concentration than males under normal P availability with two N supplies. NH4 + supply led to higher total root length, RLD and SRL but lower root tip number than NO3 − supply under normal P supply. Under P deficiency, males showed a smaller root system but greater photosynthetic P availability and higher leaf P remobilization, exhibiting a better capacity to adaptation to P-deficiency than females. Under P deficiency, NO3 − supply increased leaf photosynthesis and PUE but reduced RLD and SRL in females while males had higher leaf P redistribution and photosynthetic PUE than NH4 + supply. Females had a better potentiality to cope with P deficiency under NO3 − supply than NH4 + supply; the contrary was true for males. These results suggest that females may devote to increase in P uptake and shoot P allocation under normal P availability, especially under NO3 − supply, while males adopt more efficient resource use and P remobilization to maximum their tolerance to P-deficiency.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yuhao Feng ◽  
Haojie Su ◽  
Zhiyao Tang ◽  
Shaopeng Wang ◽  
Xia Zhao ◽  
...  

AbstractGlobal climate change likely alters the structure and function of vegetation and the stability of terrestrial ecosystems. It is therefore important to assess the factors controlling ecosystem resilience from local to global scales. Here we assess terrestrial vegetation resilience over the past 35 years using early warning indicators calculated from normalized difference vegetation index data. On a local scale we find that climate change reduced the resilience of ecosystems in 64.5% of the global terrestrial vegetated area. Temperature had a greater influence on vegetation resilience than precipitation, while climate mean state had a greater influence than climate variability. However, there is no evidence for decreased ecological resilience on larger scales. Instead, climate warming increased spatial asynchrony of vegetation which buffered the global-scale impacts on resilience. We suggest that the response of terrestrial ecosystem resilience to global climate change is scale-dependent and influenced by spatial asynchrony on the global scale.


2012 ◽  
Vol 9 (8) ◽  
pp. 3113-3130 ◽  
Author(s):  
D. Lombardozzi ◽  
S. Levis ◽  
G. Bonan ◽  
J. P. Sparks

Abstract. Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.


Sign in / Sign up

Export Citation Format

Share Document