Metagenomic Analysis of Fungal Communities Inhabiting the Fairy Ring Zone of Tricholoma matsutake

2013 ◽  
Vol 23 (10) ◽  
pp. 1347-1356 ◽  
Author(s):  
Miae Kim
2015 ◽  
Vol 61 (3) ◽  
pp. 67-74 ◽  
Author(s):  
Yoon-Jong Nam ◽  
Hyun Kim ◽  
Jin-Hyung Lee ◽  
Hyeokjun Yoon ◽  
Jong-Guk Kim

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 758
Author(s):  
Gi-Hong An ◽  
Jae-Han Cho ◽  
Ok-Tae Kim ◽  
Jae-Gu Han

Tricholoma matsutake is an ectomycorrhizal fungus that has obligate symbiotic relationships with Pinus densiflora. Its fruiting body has a distinctive flavor and is traded at a high price. Thus, it has been a significant source of income for rural communities in Korea. We hypothesized that biotic factors considerably influence the formation of the T. matsutake mushroom, and the soils producing T. matsutake share similar microbial characteristics. Therefore, the present study aimed to detect the specific fungal and bacterial groups in T. matsutake production soils (shiro+) and nonproduction soils (shiro−) of the Bonghwa and Yanyang regions via next-generation sequencing. In a total of 15 phyla, 36 classes, 234 genera of bacteria, six phyla, 29 classes, and 164 genera of fungi were detected from four samples at both sites. The species diversity of shiro+ soils was lower than the shiro− samples in both the fungal and bacterial groups. In addition, we did not find high similarities in the microbial communities between the shiro+ soils of the two regions. However, in the resulting differences between the fungal communities categorized by their trophic assembly, we found a distinguishable compositional pattern in the fungal communities from the shiro+ soils and the shiro− soils of the two sites. Thus, the similarity among the microbial communities in the forest soils may be due to the fact that the microbial communities in the T. matsutake dominant soils are closely associated with biotic factors and abiotic factors such as soil properties.


2019 ◽  
Vol 7 (12) ◽  
pp. 619 ◽  
Author(s):  
Benito Gómez-Silva ◽  
Claudia Vilo-Muñoz ◽  
Alexandra Galetović ◽  
Qunfeng Dong ◽  
Hugo G. Castelán-Sánchez ◽  
...  

Halites, which are typically found in various Atacama locations, are evaporitic rocks that are considered as micro-scaled salterns. Both structural and functional metagenomic analyses of halite nodules were performed. Structural analyses indicated that the halite microbiota is mainly composed of NaCl-adapted microorganisms. In addition, halites appear to harbor a limited diversity of fungal families together with a biodiverse collection of protozoa. Functional analysis indicated that the halite microbiome possesses the capacity to make an extensive contribution to carbon, nitrogen, and sulfur cycles, but possess a limited capacity to fix nitrogen. The halite metagenome also contains a vast repertory of carbohydrate active enzymes (CAZY) with glycosyl transferases being the most abundant class present, followed by glycosyl hydrolases (GH). Amylases were also present in high abundance, with GH also being identified. Thus, the halite microbiota is a potential useful source of novel enzymes that could have biotechnological applicability. This is the first metagenomic report of fungi and protozoa as endolithobionts of halite nodules, as well as the first attempt to describe the repertoire of CAZY in this community. In addition, we present a comprehensive functional metagenomic analysis of the metabolic capacities of the halite microbiota, providing evidence for the first time on the sulfur cycle in Atacama halites.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
L Wiehlmann ◽  
P Chouvarine ◽  
P Moran Losada ◽  
B Tümmler
Keyword(s):  

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Suzanne Donn ◽  
Sally Power ◽  
Kirk Barnett ◽  
Jeff Powell

Future climate scenarios predict changes in rainfall regimes. These changes are expected to affect plants via effects on the expression of root traits associated with water and nutrient uptake. Associated microorganisms may also respond to these new precipitation regimes, either directly in response to changes in the soil environment or indirectly in response to altered root trait expression. We characterised arbuscular mycorrhizal (AM) fungal communities in an Australian grassland exposed to experimentally altered rainfall regimes. We used Illumina sequencing to assess the responses of AM fungal communities associated with four plant species sampled in different watering treatments and evaluated the extent to which shifts were associated with changes in root traits. We observed that altered rainfall regimes affected the composition but not the richness of the AM fungal communities, and we found distinctive communities in the increased rainfall treatment. We found no evidence of altered rainfall regime effects via changes in host physiology because none of the studied traits were affected by changes in rainfall. However, specific root length was observed to correlate with AM fungal richness, while concentrations of phosphorus and calcium in root tissue and the proportion of root length allocated to fine roots were correlated to community composition. Our study provides evidence that climate change and its effects on rainfall may influence AM fungal community assembly, as do plant traits related to plant nutrition and water uptake. We did not find evidence that host responses to altered rainfall drive AM fungal community assembly in this grassland ecosystem.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Sign in / Sign up

Export Citation Format

Share Document