Improving Effectiveness of Intrusion Detection by Correlation Feature Selection

Author(s):  
Hai Thanh Nguyen ◽  
Katrin Franke ◽  
Slobodan Petrovic

In this paper, the authors propose a new feature selection procedure for intrusion detection, which is based on filter method used in machine learning. They focus on Correlation Feature Selection (CFS) and transform the problem of feature selection by means of CFS measure into a mixed 0-1 linear programming problem with a number of constraints and variables that is linear in the number of full set features. The mixed 0-1 linear programming problem can then be solved by using branch-and-bound algorithm. This feature selection algorithm was compared experimentally with the best-first-CFS and the genetic-algorithm-CFS methods regarding the feature selection capabilities. Classification accuracies obtained after the feature selection by means of the C4.5 and the BayesNet over the KDD CUP’99 dataset were also tested. Experiments show that the authors’ method outperforms the best-first-CFS and the genetic-algorithm-CFS methods by removing much more redundant features while keeping the classification accuracies or getting better performances.

Author(s):  
Hai Thanh Nguyen ◽  
Katrin Franke ◽  
Slobodan Petrovic

In this paper, the authors propose a new feature selection procedure for intrusion detection, which is based on filter method used in machine learning. They focus on Correlation Feature Selection (CFS) and transform the problem of feature selection by means of CFS measure into a mixed 0-1 linear programming problem with a number of constraints and variables that is linear in the number of full set features. The mixed 0-1 linear programming problem can then be solved by using branch-and-bound algorithm. This feature selection algorithm was compared experimentally with the best-first-CFS and the genetic-algorithm-CFS methods regarding the feature selection capabilities. Classification accuracies obtained after the feature selection by means of the C4.5 and the BayesNet over the KDD CUP’99 dataset were also tested. Experiments show that the authors’ method outperforms the best-first-CFS and the genetic-algorithm-CFS methods by removing much more redundant features while keeping the classification accuracies or getting better performances.


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


Sign in / Sign up

Export Citation Format

Share Document