A Modular Dynamical Cryptosystem Based on Continuous-Interval Cellular Automata

Author(s):  
Jesus D. Terrazas Gonzalez ◽  
Witold Kinsner

This paper presents a new cryptosystem based on chaotic continuous-interval cellular automata (CCA) to increase data protection as demonstrated by their flexibility to encrypt and decrypt information from distinct sources. Enhancements to cryptosystems are also presented including (i) a model based on a new chaotic CCA attractor, (ii) the dynamical integration of modules containing dynamical systems to generate complex sequences, and (iii) an enhancement for symmetric cryptosystems by allowing them to generate an unlimited number of keys. This paper also presents a process of mixing chaotic sequences obtained from cellular automata, instead of using differential equations, as a basis to achieve higher security and higher speed for the encryption and decryption processes, as compared to other recent approaches. The complexity of the mixed sequences is measured using the variance fractal dimension trajectory to compare them to the unmixed chaotic sequences to verify that the former are more complex. This type of polyscale measure and evaluation has never been done in the past outside this research group.

Author(s):  
Jesus D. Terrazas Gonzalez ◽  
Witold Kinsner

This paper presents a new cryptosystem based on chaotic continuous-interval cellular automata (CCA) to increase data protection as demonstrated by their flexibility to encrypt and decrypt information from distinct sources. Enhancements to cryptosystems are also presented including (i) a model based on a new chaotic CCA attractor, (ii) the dynamical integration of modules containing dynamical systems to generate complex sequences, and (iii) an enhancement for symmetric cryptosystems by allowing them to generate an unlimited number of keys. This paper also presents a process of mixing chaotic sequences obtained from cellular automata, instead of using differential equations, as a basis to achieve higher security and higher speed for the encryption and decryption processes, as compared to other recent approaches. The complexity of the mixed sequences is measured using the variance fractal dimension trajectory to compare them to the unmixed chaotic sequences to verify that the former are more complex. This type of polyscale measure and evaluation has never been done in the past outside this research group.


1987 ◽  
Vol 42 (6) ◽  
pp. 547-555 ◽  
Author(s):  
Joseph L. McCauley

We discuss the replacement of discrete maps by automata, algorithms for the transformation of finite length digit strings into other finite length digit strings, and then discuss what it required in order to replace chaotic phase flows that are generated by ordinary differential equations by automata without introducing unknown and uncontrollable errors. That question arises naturally in the discretization of chaotic differential equations for the purpose of computation. We discuss as examples an autonomous and a periodically driven system, and a possible connection with cellular automata is also discussed. Qualitatively, our considerations are equivalent to asking when can the solution of a chaotic set of equations be regarded as a machine, or a model of a machine.


Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng

AbstractThis is a survey paper on the quantitative analysis of the propagation of singularities for the viscosity solutions to Hamilton–Jacobi equations in the past decades. We also review further applications of the theory to various fields such as Riemannian geometry, Hamiltonian dynamical systems and partial differential equations.


2010 ◽  
Vol 20 (08) ◽  
pp. 2253-2425 ◽  
Author(s):  
LEON O. CHUA ◽  
GIOVANNI E. PAZIENZA

Over the past eight years, we have studied one of the simplest, yet extremely interesting, dynamical systems; namely, the one-dimensional binary Cellular Automata. The most remarkable results have been presented in a series of papers which is concluded by the present article. The final stop of our odyssey is devoted to the analysis of the second half of the 30 Bernoulli στ-shift rules, which constitute the largest among the six groups in which we classified the 256 local rules. For all these 15 rules, we present the basin-tree diagrams obtained by using each bit string with L ≤ 8 as initial state, a summary of the characteristics of their ω-limit orbits, and the space-time patterns generated from the superstring. Also, in the last section we summarize the main results we obtained by means of our "nonlinear dynamics perspective".


Author(s):  
Mohd Javed ◽  
Khaleel Ahmad ◽  
Ahmad Talha Siddiqui

WiMAX is the innovation and upgradation of 802.16 benchmarks given by IEEE. It has numerous remarkable qualities, for example, high information rate, the nature of the service, versatility, security and portability putting it heads and shoulder over the current advancements like broadband link, DSL and remote systems. Though like its competitors the concern for security remains mandatory. Since the remote medium is accessible to call, the assailants can undoubtedly get into the system, making the powerless against the client. Many modern confirmations and encryption methods have been installed into WiMAX; however, regardless it opens with up different dangers. In this paper, we proposed Elliptic curve Cryptography based on Cellular Automata (EC3A) for encryption and decryption the message for improving the WiMAX security


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractAn elementary approach, based on a systematic use of lower and upper solutions, is employed to detect the qualitative properties of solutions of first order scalar periodic ordinary differential equations. This study is carried out in the Carathéodory setting, avoiding any uniqueness assumption, in the future or in the past, for the Cauchy problem. Various classical and recent results are recovered and generalized.


1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


Sign in / Sign up

Export Citation Format

Share Document