Rationale for Use of Cloud Computing

Author(s):  
Amir Zeid ◽  
Ahmed Shawish ◽  
Maria Salama

Cloud Computing is the most promising computing paradigm that provides flexible resource allocation on demand with the promise of realizing elastic, Internet-accessible, computing on a pay-as-you-go basis. With the growth and expansion of the Cloud services and participation of various services providers, the description of quality parameters and measurement units start to diversify and sometime contradict. Such ambiguity does not only result in the rise of various Quality of Service (QoS) interoperability problems but also in the distraction of the services consumers who find themselves unable to match quality requirements with the providers’ offerings. Yet, employing the available QoS models that cover certain quality aspects while neglecting others drive consumers to perform their service selection based only on cost-benefit analysis and performance evaluation, without being able to perform subjective selection based on a comprehensive set of well-defined quality aspects. This chapter presents a novel QoS ontology that combines and defines all of the existing quality aspects in a unified way to efficiently overcome all existing diversities. Using such an ontology, a comprehensive broad QoS model combining all quality-related parameters of both service providers and consumers for different Cloud platforms is presented. The chapter also provides a mathematical model that formulates the Cloud Computing service provider selection optimization problem based on QoS guarantees. The validation of the provided model is addressed in the chapter through extensive simulation studies conducted on benchmark data of Content Delivery Network providers. The studies report the efficient matching of the model with the market-oriented different platform characteristics.

2015 ◽  
pp. 2166-2197
Author(s):  
Amir Zeid ◽  
Ahmed Shawish ◽  
Maria Salama

Cloud Computing is the most promising computing paradigm that provides flexible resource allocation on demand with the promise of realizing elastic, Internet-accessible, computing on a pay-as-you-go basis. With the growth and expansion of the Cloud services and participation of various services providers, the description of quality parameters and measurement units start to diversify and sometime contradict. Such ambiguity does not only result in the rise of various Quality of Service (QoS) interoperability problems but also in the distraction of the services consumers who find themselves unable to match quality requirements with the providers' offerings. Yet, employing the available QoS models that cover certain quality aspects while neglecting others drive consumers to perform their service selection based only on cost-benefit analysis and performance evaluation, without being able to perform subjective selection based on a comprehensive set of well-defined quality aspects. This chapter presents a novel QoS ontology that combines and defines all of the existing quality aspects in a unified way to efficiently overcome all existing diversities. Using such an ontology, a comprehensive broad QoS model combining all quality-related parameters of both service providers and consumers for different Cloud platforms is presented. The chapter also provides a mathematical model that formulates the Cloud Computing service provider selection optimization problem based on QoS guarantees. The validation of the provided model is addressed in the chapter through extensive simulation studies conducted on benchmark data of Content Delivery Network providers. The studies report the efficient matching of the model with the market-oriented different platform characteristics.


2014 ◽  
Vol 4 (2) ◽  
pp. 48-72 ◽  
Author(s):  
Maria Salama ◽  
Amir Zeid ◽  
Ahmed Shawish ◽  
Xiaohong Jiang

Cloud Computing is a promising computing paradigm that provides flexible, Internet-accessible resources allocation on demand on a pay-as-you-go basis. With the growth and expansion of Cloud services and participation of various services providers, the description of quality parameters and measurement units started to diverse and sometimes contradict. Such ambiguity does not only result in the raise of various QoS interoperability problems, but also in the distraction of the services consumers who find themselves unable to match their quality requirements with the providers' offerings. Influenced by such diversity, the available QoS models are limited to either cost-benefit analysis or performance evaluation, without being able to cover a comprehensive set of well-defined quality aspects. In this paper, we provide a complete framework for such problem. We firstly propose a novel QoS ontology that combine and define all of the existing quality aspects in a unified way to efficiently overcome all existing diversity. Using such ontology, we propose a comprehensive broad QoS model combining all quality parameters of both service providers and consumers for different Cloud platforms. We then propose a mathematical model addressing the Cloud Computing service provider selection optimization problem based on QoS-guarantee. The proposed model reports an efficient matching with the market-oriented different platforms characteristics; validated through extensive simulation studies conducted on benchmark data of Content Delivery Network providers.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Zhao Wu ◽  
Naixue Xiong ◽  
Yannong Huang ◽  
Qiong Gu ◽  
Chunyang Hu ◽  
...  

At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important revolution of software industry. The cloud services composition is one of the key techniques in software development. The optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques, for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service composition application based on the multiple state system theory is presented. Then the reliability and performance definition based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is presented. In the end, the illustrative examples are given.


Author(s):  
Valentin Tablan ◽  
Ian Roberts ◽  
Hamish Cunningham ◽  
Kalina Bontcheva

Cloud computing is increasingly being regarded as a key enabler of the ‘democratization of science’, because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research—GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost–benefit analysis and usage evaluation.


Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


2019 ◽  
Vol 8 (3) ◽  
pp. 6146-6149

It is desirable to incorporate Reclaimed Asphalt Pavement into the asphalt mixtures, which provides several benefits i.e. economic, environmental and performance. It is necessary to study, the economic analysis of the RAP since that incur several contingencies to the asphalt mixtures. In this study, a simple approach is used to evaluate the production cost of the asphalt and RAP incorporated asphalt mixtures. Apart from that Waste Vegetable Oil (WVO) is used as a rejuvenator to enhance the properties of the mixture. In this study, asphalt mixture production cost is evaluated and cost of each material is taken from the Public Works Department Standard Scheduled of Rates (PWD – SSR) and the market survey techniques are followed. From the cost-benefit ratio, it is observed that the reduction in the Optimum Binder Content (OBC) provides great economic savings to the production cost. The incorporation of the RAP reduced the asphalt content and reduced the production cost of the asphalt mixtures. The addition of the WVO further reduced the OBC but increased the production cost compared to the non-rejuvenated mixture. The increase in the production cost is due to the extra cost invested on the WVO and other contingencies.


2017 ◽  
Vol 7 (6) ◽  
pp. 2268-2272
Author(s):  
B. Heydari ◽  
M. Aajami

Due to its efficient, flexible, and dynamic substructure in information technology and service quality parameters estimation, cloud computing has become one of the most important issues in computer world. Discovering cloud services has been posed as a fundamental issue in reaching out high efficiency. In order to do one’s own operations in cloud space, any user needs to request several various services either simultaneously or according to a working routine. These services can be presented by different cloud producers or different decision-making policies. Therefore, service management is one of the important and challenging issues in cloud computing. With the advent of semantic web and practical services accordingly in cloud computing space, access to different kinds of applications has become possible. Ontology is the core of semantic web and can be used to ease the process of discovering services. A new model based on ontology has been proposed in this paper. The results indicate that the proposed model has explored cloud services based on user search results in lesser time compared to other models.


Sign in / Sign up

Export Citation Format

Share Document