RSA-Public Key Cryptosystems Based on Quadratic Equations in Finite Field

Author(s):  
Sattar B. Sadkhan Al Maliky ◽  
Luay H. Al-Siwidi

The importance of Public Key Cryptosystems (PKCs) in the cryptography field is well known. They represent a great revolution in this field. The PKCs depend mainly on mathematical problems, like factorization problem, and a trapdoor one-way function problem. Rivest, Shamir, and Adleman (RSA) PKC systems are based on factorization mathematical problems. There are many types of RSA cryptosystems. Rabin's Cryptosystem is considered one example of this type, which is based on using the square order (quadratic equation) in encryption function. Many cryptosystems (since 1978) were implemented under such a mathematical approach. This chapter provides an illustration of the variants of RSA-Public Key Cryptosystems based on quadratic equations in Finite Field, describing their key generation, encryption, and decryption processes. In addition, the chapter illustrates a proposed general formula for the equation describing these different types and a proposed generalization for the Chinese Remainder Theorem.

Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
Baocang Wang

Public key cryptosystems are constructed by embedding a trapdoor into a one-way function. So, the one-wayness and the trapdoorness are vital to public key cryptography. In this paper, we propose a novel public key cryptographic primitive called preimage selective trapdoor function. This scenario allows to use exponentially many preimage to hide a plaintext even if the underlying function is not one-way. The compact knapsack problem is used to construct a probabilistic public key cryptosystem, the underlying encryption function of which is proven to be preimage selective trapdoor one-way functions under some linearization attack models. The constructive method can guarantee the noninjectivity of the underlying encryption function and the unique decipherability for ciphertexts simultaneously. It is heuristically argued that the security of the proposal cannot be compromised by a polynomial-time adversary even if the compact knapsack is easy to solve. We failed to provide any provable security results about the proposal; however, heuristic illustrations show that the proposal is secure against some known attacks including brute force attacks, linearization attacks, and key-recovery attacks. The proposal turns out to have acceptable key sizes and performs efficiently and hence is practical.


2021 ◽  
Author(s):  
Md. Helal Ahmed ◽  
Jagmohan Tanti ◽  
Sumant Pushp

Confidentiality and Integrity are two paramount objectives in the evaluation of information and communication technology. In this chapter, we propose an arithmetic approach for designing asymmetric key cryptography. Our method is based on the formulation of cyclotomic matrices correspond to a diophantine system. The strategy uses in cyclotomic matrices to design a one-way function. The result of a one-way function that is efficient to compute, however, is hard to process its inverse except if privileged information about the hidden entry is known. Also, we demonstrate that encryption and decryption can be efficiently performed with the asymptotic complexity of Oe2.373. Finally, we study the computational complexity of the cryptosystem.


2016 ◽  
Vol 66 (6) ◽  
pp. 590
Author(s):  
P. Kumaraswamy ◽  
C.V. Guru Rao ◽  
V. Janaki ◽  
K.V.T.K.N. Prashanth

<p>Public key cryptosystems are secure only when the authenticity of the public key is assured. Shao proposed<br />a new scheme to overcome the problems of the existing schemes, which suffers from two major drawbacks. The<br />first drawback is the availability of users’ passwords in plaintext format in key server which are prone to attacks<br />by ill-minded users. The second one is depending on the key server blindly for certificate generation, without<br />further verification by the user. To overcome these severe drawbacks, we proposed an improved key authentication<br />scheme based on Chinese remainder theorem and discrete logarithms. Our scheme allows the user to generate his/<br />her certificate without the help of any trusted third party. This scheme is intended for online services, military and<br />defense applications to exchange keys securely.<br /> </p>


Author(s):  
Eko Hariyanto Hariyanto ◽  
Muhammad Zarlis ◽  
Darmeli Nasution Nasution ◽  
Sri Wahyuni

 Security of RSA cryptography lied in the difficulty of factoring the number p and q bacame the prime factor. The greater the value of p and q used, the better the security level was. However, this could result in a very slow decryption process. The most commonly used and discussed method of speeding up the encryption and decryption process in RSA was the Chinese Remainder Theorem (CRT). Beside that method, there was another method with the same concept with CRT namely Aryabhata Remainder Theorem which was also relevant used in public key cryptography such as RSA. The purpose of this study was to obtain an effective method to RSA especially in the decryption process based on the calculation of the time complexity of computing.


2018 ◽  
Vol 6 (2) ◽  
pp. 1-9
Author(s):  
Xiaoyi Zhou ◽  
Jixin Ma ◽  
Xiaoming Yao ◽  
Honglei Li

This article proposes a novel scheme for RFID anti-counterfeiting by applying bisectional multivariate quadratic equations (BMQE) system into an RF tag data encryption. In the key generation process, arbitrarily choose two matrix sets (denoted as A and B) and a base RAB such that [(AB) ⃗ ]=λ〖R_AB〗^T, and generate 2n BMQ polynomials (denoted as ρ) over finite field F_q. Therefore, (F_q, ρ) is taken as a public key and (A,B,λ) as a private key. In the encryption process, the EPC code is hashed into a message digest d_m. Then d_m is padded to d_m^' which is a non-zero 2n×2n matrix over F_q. With (A,B,λ)and d_m^', s_m is formed as an n-vector over F_2. Unlike the existing anti-counterfeit scheme, the one the authors proposed is based on quantum cryptography, thus it is robust enough to resist the existing attacks and has high security.


Sign in / Sign up

Export Citation Format

Share Document