Integrating Industry Research in Pedagogical Practice

Author(s):  
Krishnan Kannoorpatti ◽  
Daria Surovtseva

This chapter discusses how the issue of microbial corrosion can be incorporated in the Materials Engineering curriculum. Research in this field contributes to knowledge building in microstructural effect of corrosion, and development of advanced corrosion protection techniques, which aligns with the essence of Materials Science and Engineering. This chapter suggests an instructional approach where students undertake a project in which they produce a database summarizing the relationship between corrosion rate and factors as types of bacteria, functional genes, types of alloys, and welding procedures. The benefit of such approach is two-fold. First, discussion of this topic in the curriculum provides an opportunity to introduce approaches for efficient management of the current issues encountered in industry. Second, there is currently no comprehensive database on the microbial corrosion conditions. Additionally, this chapter provides some insights into the best instructional strategies for the efficient management of an online engineering course in higher education.

MRS Bulletin ◽  
1987 ◽  
Vol 12 (4) ◽  
pp. 30-33 ◽  
Author(s):  
D.W. Readey

Forty years ago there were essentially no academic departments with titles of “Materials Science” or “Materials Engineering.” There were, of course, many materials departments. They were called “Metallurgy,” “Metallurgical Engineering,” “Mining and Metallurgy,” and other permutations and combinations. There were also a small number of “Ceramic” or “Ceramic Engineering” departments. Essentially none included “polymers.” Over the years titles have evolved via a route that frequently followed “Mining and Metallurgy,” to “Metallurgical Engineering,” to “Materials Science and Metallurgical Engineering,” and finally to “Materials Science and Engineering.” The evolution was driven by recognition of the commonality of material structure-property correlations and the concomitant broadening of faculty interests to include other materials. However, the issue is not department titles but whether a single degree option in materials science and engineering best serves the needs of students.Few proponents of materials science and engineering dispute the necessity for understanding the relationships between processing (including synthesis), structure, and properties (including performance) of materials. However, can a single BS degree in materials science and engineering provide the background in these relationships for all materials and satisfy the entire market now served by several different materials degrees?The issue is not whether “Materials Science and Engineering” departments or some other academic grouping of individuals with common interests should or should not exist.


2001 ◽  
Vol 684 ◽  
Author(s):  
Stacy H. Gleixner

ABSTRACTFor materials science and engineering departments across the country, recruitment of students is a critical concern. To increase enrollment, students' interest in materials science needs to be sparked early, preferably before they begin college. However, many entering college students have never heard of the major and/or are unsure of what a career in materials science would be like. There are many excellent resources that have been developed to target this problem directly including comprehensive career resources on the web, videos describing careers in materials engineering, and teaching materials developed for middle and high school teachers.


2010 ◽  
Vol 146-147 ◽  
pp. 194-197
Author(s):  
Zhan Yong Wang ◽  
Jia Yue Xu ◽  
Hui Fen Chen ◽  
Yong Zheng Fang ◽  
Xiao Rong Liu

As a professional with strong theoretical and practical in a new college, the guidance major-materials science and engineering involves extremely broad field. Our reform ideas and practices are only to training science-based applied talents possessing engineering capabilities. Facing the new situation on the demand for materials engineering personnel, we reform curriculum and teaching to get rid of the drawbacks of the original content and build the professional training program with the characteristics and course system.


2000 ◽  
Vol 632 ◽  
Author(s):  
Eric Werwa

ABSTRACTA review of the educational literature on naive concepts about principles of chemistry and physics and surveys of science museum visitors reveal that people of all ages have robust alternative notions about the nature of atoms, matter, and bonding that persist despite formal science education experiences. Some confusion arises from the profound differences in the way that scientists and the lay public use terms such as materials, metals, liquids, models, function, matter, and bonding. Many models that eloquently articulate arrangements of atoms and molecules to informed scientists are not widely understood by lay people and may promote naive notions among the public. Shifts from one type of atomic model to another and changes in size scales are particularly confusing to learners. People's abilities to describe and understand the properties of materials are largely based on tangible experiences, and much of what students learn in school does not help them interpret their encounters with materials and phenomena in everyday life. Identification of these challenges will help educators better convey the principles of materials science and engineering to students, and will be particularly beneficial in the design of the Materials MicroWorld traveling museum exhibit.


2021 ◽  
Vol 22 (9) ◽  
pp. 4543
Author(s):  
Xuan-Hung Pham ◽  
Seung-min Park ◽  
Bong-Hyun Jun

Nano/micro particles are considered to be the most valuable and important functional materials in the field of materials science and engineering [...]


Sign in / Sign up

Export Citation Format

Share Document