A Method for Classification Using Data Mining Technique for Diabetes

2016 ◽  
pp. 426-449
Author(s):  
Ahmad Al-Khasawneh

Many researchers in the health information system field have been attracted to develop computer applications that help in the diagnosis process. Imperatively, data mining algorithms address the vital role in all of these applications. Many contributions were made in this area. There has always been a debate on the algorithm that gives the best classifier, the parameters to be used, the dataset pre-processing steps, etc. In this paper, the author largely emphasizes that the best way to build a predictive model with relatively high classification accuracy is to build several predictive models and to choose the model that gives the best results through parameters optimization. Diagnosing diabetes mellitus has gained considerable attention in the last few decades due to the increased severity of the disease. In this research, the author reviews four predictive data mining approaches that are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset; k-nearest neighbour, support vector machine, multilayer perceptron neural network, and naive bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.

2016 ◽  
pp. 738-761
Author(s):  
Ahmad Al-Khasawneh

Many researchers in the health information system field have been attracted to develop computer applications that help in the diagnosis process. Imperatively, data mining algorithms address the vital role in all of these applications. Many contributions were made in this area. There has always been a debate on the algorithm that gives the best classifier, the parameters to be used, the dataset pre-processing steps, etc. In this paper, the author largely emphasizes that the best way to build a predictive model with relatively high classification accuracy is to build several predictive models and to choose the model that gives the best results through parameters optimization. Diagnosing diabetes mellitus has gained considerable attention in the last few decades due to the increased severity of the disease. In this research, the author reviews four predictive data mining approaches that are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset; k-nearest neighbour, support vector machine, multilayer perceptron neural network, and naive bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.


2020 ◽  
pp. 127-150
Author(s):  
Ahmad Al-Khasawneh

Many researchers in the health information system field have been attracted to develop computer applications that help in the diagnosis process. Imperatively, data mining algorithms address the vital role in all of these applications. Many contributions were made in this area. There has always been a debate on the algorithm that gives the best classifier, the parameters to be used, the dataset pre-processing steps, etc. In this paper, the author largely emphasizes that the best way to build a predictive model with relatively high classification accuracy is to build several predictive models and to choose the model that gives the best results through parameters optimization. Diagnosing diabetes mellitus has gained considerable attention in the last few decades due to the increased severity of the disease. In this research, the author reviews four predictive data mining approaches that are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset; k-nearest neighbour, support vector machine, multilayer perceptron neural network, and naive bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.


Author(s):  
Ahmad M. Al-Khasawneh

The use of data mining algorithms in health information systems has played a significant role in developing applications that help to diagnose different diseases. The type of the disease determines the selection of the algorithm, parameters to be used, and dataset pre-processing steps, etc. In this chapter, diagnosing diabetes mellitus is the target since it has gained significant attention in the last few decades due to the increased severity of the disease. Four predictive data mining approaches are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset: k-nearest neighbor, support vector machine, multilayer perceptron neural network, and naive Bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.


Author(s):  
Ahmad M. Al-Khasawneh

The use of data mining algorithms in health information systems has played a significant role in developing applications that help to diagnose different diseases. The type of the disease determines the selection of the algorithm, parameters to be used, and dataset pre-processing steps, etc. In this chapter, diagnosing diabetes mellitus is the target since it has gained significant attention in the last few decades due to the increased severity of the disease. Four predictive data mining approaches are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset: k-nearest neighbor, support vector machine, multilayer perceptron neural network, and naive Bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.


Author(s):  
Ahmad Al-Khasawneh

Many researchers in the health information system field have been attracted to develop computer applications that help in the diagnosis process. Imperatively, data mining algorithms address the vital role in all of these applications. Many contributions were made in this area. There has always been a debate on the algorithm that gives the best classifier, the parameters to be used, the dataset pre-processing steps, etc. In this paper, the author largely emphasizes that the best way to build a predictive model with relatively high classification accuracy is to build several predictive models and to choose the model that gives the best results through parameters optimization. Diagnosing diabetes mellitus has gained considerable attention in the last few decades due to the increased severity of the disease. In this research, the author reviews four predictive data mining approaches that are being used in diagnosing diabetes. Four models were implemented to diagnose diabetes from PIMA dataset; k-nearest neighbour, support vector machine, multilayer perceptron neural network, and naive bayesian network. Giving the highest classification accuracy, support vector machine technique outperformed the others with a value of 78.83%.


The healthcare industry assembles massive volume of healthcare information or data that circulate the information into useful data. In everyday life several factors that affect the human diseases. Hospitals are producing large amount of information related to patients. This paper describes the various data mining algorithms such as neural network, support vector machine, KNN, decision tree etc. and provides an overall brief of the existing work. The major advantage of using data mining is that to identify the structures.


2013 ◽  
Vol 295-298 ◽  
pp. 644-647 ◽  
Author(s):  
Yu Kai Yao ◽  
Hong Mei Cui ◽  
Ming Wei Len ◽  
Xiao Yun Chen

SVM (Support Vector Machine) is a powerful data mining algorithm, and is mainly used to finish classification or regression tasks. In this literature, SVM is used to conduct disease prediction. We focus on integrating with stratified sample and grid search technology to improve the classification accuracy of SVM, thus, we propose an improved algorithm named SGSVM: Stratified sample and Grid search based SVM. To testify the performance of SGSVM, heart-disease data from UCI are used in our experiment, and the results show SGSVM has obvious improvement in classification accuracy, and this is very valuable especially in disease prediction.


Author(s):  
Efat Jabarpour ◽  
Amin Abedini ◽  
Abbasali Keshtkar

Introduction: Osteoporosis is a disease that reduces bone density and loses the quality of bone microstructure leading to an increased risk of fractures. It is one of the major causes of inability and death in elderly people. The current study aims at determining the factors influencing the incidence of osteoporosis and providing a predictive model for the disease diagnosis to increase the diagnostic speed and reduce diagnostic costs. Methods: An Individual's data including personal information, lifestyle, and disease information were reviewed. A new model has been presented based on the Cross-Industry Standard Process CRISP methodology. Besides, Support Vector Machine (SVM) and Bayes methods (Tree Augmented Naïve Bayes (TAN)) and Clementine12 have been used as data mining tools. Results: Some features have been detected to affect this disease. The rules have been extracted that can be used as a pattern for the prediction of the patients' status. Classification precision was calculated to be 88.39% for SVM, and 91.29% for  (TAN) when the precision of  TAN  is higher comparing to other methods. Conclusion: The most effective factors concerning osteoporosis are detected and can be used for a new sample with defined characteristics to predict the possibility of osteoporosis in a person.  


Author(s):  
M. Jupri ◽  
Riyanarto Sarno

The achievement of accepting optimal tax need effective and efficient tax supervision can be achieved by classifying taxpayer compliance to tax regulations. Considering this issue, this paper proposes the classification of taxpayer compliance using data mining algorithms; i.e. C4.5, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, and Multilayer Perceptron based on the compliance of taxpayer data. The taxpayer compliance can be classified into four classes, which are (1) formal and material compliant taxpayers, (2) formal compliant taxpayers, (3) material compliant taxpayers, and (4) formal and material non-compliant taxpayers. Furthermore, the results of data mining algorithms are compared by using Fuzzy AHP and TOPSIS to determine the best performance classification based on the criteria of Accuracy, F-Score, and Time required. Selection of the taxpayer's priority for more detailed supervision at each level of taxpayer compliance is ranked using Fuzzy AHP and TOPSIS based on criteria of dataset variables. The results show that C4.5 is the best performance classification and achieves preference value of 0.998; whereas the MLP algorithm results from the lowest preference value of 0.131. Alternative taxpayer A233 is the top priority taxpayer with a preference value of 0.433; whereas alternative taxpayer A051 is the lowest priority taxpayer with a preference value of 0.036.


Sign in / Sign up

Export Citation Format

Share Document