A Novel Hybrid Genetic Algorithm for Unconstrained and Constrained Function Optimization

Author(s):  
Rajashree Mishra ◽  
Kedar Nath Das

During the past decade, academic and industrial communities are highly interested in evolutionary techniques for solving optimization problems. Genetic Algorithm (GA) has proved its robustness in solving all most all types of optimization problems. To improve the performance of GA, several modifications have already been done within GA. Recently GA has been hybridized with many other nature-inspired algorithms. As such Bacterial Foraging Optimization (BFO) is popular bio inspired algorithm based on the foraging behavior of E. coli bacteria. Many researchers took active interest in hybridizing GA with BFO. Motivated by such popular hybridization of GA, an attempt has been made in this chapter to hybridize GA with BFO in a novel fashion. The Chemo-taxis step of BFO plays a major role in BFO. So an attempt has been made to hybridize Chemo-tactic step with GA cycle and the algorithm is named as Chemo-inspired Genetic Algorithm (CGA). It has been applied on benchmark functions and real life application problem to prove its efficacy.

Author(s):  
Rajashree Mishra ◽  
Kedar Nath Das

During the past decade, academic and industrial communities are highly interested in evolutionary techniques for solving optimization problems. Genetic Algorithm (GA) has proved its robustness in solving all most all types of optimization problems. To improve the performance of GA, several modifications have already been done within GA. Recently GA has been hybridized with many other nature-inspired algorithms. As such Bacterial Foraging Optimization (BFO) is popular bio inspired algorithm based on the foraging behavior of E. coli bacteria. Many researchers took active interest in hybridizing GA with BFO. Motivated by such popular hybridization of GA, an attempt has been made in this chapter to hybridize GA with BFO in a novel fashion. The Chemo-taxis step of BFO plays a major role in BFO. So an attempt has been made to hybridize Chemo-tactic step with GA cycle and the algorithm is named as Chemo-inspired Genetic Algorithm (CGA). It has been applied on benchmark functions and real life application problem to prove its efficacy.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


2010 ◽  
Vol 439-440 ◽  
pp. 641-645
Author(s):  
Chun Bo Xiu ◽  
Li Fen Lu ◽  
Yi Cheng

A hybrid genetic algorithm is proposed based on chaos optimization. The optimization process can be divided into two stages every iteration, one is genetic coarse searching and the other is chaos elaborate searching. Genetic algorithm searches the global solutions in the origin space. An elaborate space near the center of superior individuals is divided from the origin space, which is searched by chaos optimization adequately to generate new better superior individuals for genetic operation. The elaborate space can be compressed quickly to accelerate searching rate and enhance the searching efficiency. In this way, the algorithm has global searching ability and fast convergence rate. The simulation results prove that the algorithm can give satisfied results to function optimization problems.


2011 ◽  
Vol 183-185 ◽  
pp. 1090-1093
Author(s):  
Hai Tao Xin

A new hybrid algorithm that incorporates the gradient algorithm into the orthogonal genetic algorithm is presented in this paper. The experiments showed that it can achieve better performance by performing global search and local search alternately. The new algorithm can be applied to solve the function optimization problems efficiently.


2021 ◽  
Vol 6 (4 (114)) ◽  
pp. 6-14
Author(s):  
Maan Afathi

The main purpose of using the hybrid evolutionary algorithm is to reach optimal values and achieve goals that traditional methods cannot reach and because there are different evolutionary computations, each of them has different advantages and capabilities. Therefore, researchers integrate more than one algorithm into a hybrid form to increase the ability of these algorithms to perform evolutionary computation when working alone. In this paper, we propose a new algorithm for hybrid genetic algorithm (GA) and particle swarm optimization (PSO) with fuzzy logic control (FLC) approach for function optimization. Fuzzy logic is applied to switch dynamically between evolutionary algorithms, in an attempt to improve the algorithm performance. The HEF hybrid evolutionary algorithms are compared to GA, PSO, GAPSO, and PSOGA. The comparison uses a variety of measurement functions. In addition to strongly convex functions, these functions can be uniformly distributed or not, and are valuable for evaluating our approach. Iterations of 500, 1000, and 1500 were used for each function. The HEF algorithm’s efficiency was tested on four functions. The new algorithm is often the best solution, HEF accounted for 75 % of all the tests. This method is superior to conventional methods in terms of efficiency


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Li Mao ◽  
Yu Mao ◽  
Changxi Zhou ◽  
Chaofeng Li ◽  
Xiao Wei ◽  
...  

Artificial bee colony (ABC) algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC) algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Maha Ata Al-Furhud ◽  
Zakir Hussain Ahmed

The multiple travelling salesman problem (MTSP), an extension of the well-known travelling salesman problem (TSP), is studied here. In MTSP, starting from a depot, multiple salesmen require to visit all cities so that each city is required to be visited only once by one salesman only. It is NP-hard and is more complex than the usual TSP. So, exact optimal solutions can be obtained for smaller sized problem instances only. For large-sized problem instances, it is essential to apply heuristic algorithms, and amongst them, genetic algorithm is identified to be successfully deal with such complex optimization problems. So, we propose a hybrid genetic algorithm (HGA) that uses sequential constructive crossover, a local search approach along with an immigration technique to find high-quality solution to the MTSP. Then our proposed HGA is compared against some state-of-the-art algorithms by solving some TSPLIB symmetric instances of several sizes with various number of salesmen. Our experimental investigation demonstrates that the HGA is one of the best algorithms.


Sign in / Sign up

Export Citation Format

Share Document