Game-Theoretic Approaches in Heterogeneous Networks

Game Theory ◽  
2017 ◽  
pp. 204-218
Author(s):  
Chih-Yu Wang ◽  
Hung-Yu Wei ◽  
Mehdi Bennis ◽  
Athanasios V. Vasilakos

Improving capacity and coverage is one of the main issues in next-generation wireless communication. Heterogeneous networks (HetNets), which is currently investigated in LTE-Advanced standard, is a promising solution to enhance capacity and eliminate coverage holes in a cost-efficient manner. A HetNet is composed of existing macrocells and various types of small cells. By deploying small cells into the existing network, operators enhance the users' quality of service which are suffering from severe signal degradation at cell edges or coverage holes. Nevertheless, there are numerous challenges in integrating small cells into the existing cellular network due to the characteristics: unplanned deployment, intercell interference, economic potential, etc. Recently, game theory has been shown to be a powerful tool for investigating the challenges in HetNets. Several game-theoretic approaches have been proposed to model the distributed deployment and self-organization feature of HetNets. In this chapter, the authors first give an overview of the challenges in HetNets. Subsequently, the authors illustrate how game theory can be applied to solve issues related to HetNets.

Author(s):  
Chih-Yu Wang ◽  
Hung-Yu Wei ◽  
Mehdi Bennis ◽  
Athanasios V. Vasilakos

Improving capacity and coverage is one of the main issues in next-generation wireless communication. Heterogeneous networks (HetNets), which is currently investigated in LTE-Advanced standard, is a promising solution to enhance capacity and eliminate coverage holes in a cost-efficient manner. A HetNet is composed of existing macrocells and various types of small cells. By deploying small cells into the existing network, operators enhance the users' quality of service which are suffering from severe signal degradation at cell edges or coverage holes. Nevertheless, there are numerous challenges in integrating small cells into the existing cellular network due to the characteristics: unplanned deployment, intercell interference, economic potential, etc. Recently, game theory has been shown to be a powerful tool for investigating the challenges in HetNets. Several game-theoretic approaches have been proposed to model the distributed deployment and self-organization feature of HetNets. In this chapter, the authors first give an overview of the challenges in HetNets. Subsequently, the authors illustrate how game theory can be applied to solve issues related to HetNets.


Author(s):  
Mohammed I. Aal-nouman ◽  
Osamah Abdullah ◽  
Noor Qusay A. Al Shaikhli

With the remarkable impact and fast growth of the mobile networks, the mobile base stations have been increased too, especially in the high population areas. These base stations will be overloaded by users, for that reason the small cells (like pico cells) were introduced. However, the inter-cell interference will be high in this type of Heterogeneous networks. There are many solutions to mitigate this interference like the inter-cell interference coordination (ICIC), and then the further enhanced ICIC (Fe-ICIC) where the almost blank subframes are used to give priority to the (victim users). But it could be a waste of bandwidth due to the unused subframes. For that reason, in this paper, we proposed an adaptive reduced power subframe that reduces its power ratio according to the user’s signal-to-interference-plus-noise ratio (SINR) in order to get a better throughput and to mitigate the intercell interference. When the user is far from the cell, the case will be considered as an edge user and will get a higher priority to be served first. The results show that the throughput of all users in the macro cells and pico cell will be improved when applying the proposed scheme in term of throughput for the users and the cells.


2019 ◽  
Vol 13 (15) ◽  
pp. 2395-2402 ◽  
Author(s):  
Mohanad Alhabo ◽  
Li Zhang ◽  
Naveed Nawaz ◽  
Hayder Al-Kashoash

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
M. A. Gadam ◽  
Maryam Abdulazeez Ahmed ◽  
Chee Kyun Ng ◽  
Nor Kamariah Nordin ◽  
Aduwati Sali ◽  
...  

Poor cell selection is the main challenge in Picocell (PeNB) deployment in Long Term Evolution- (LTE-) Advanced heterogeneous networks (HetNets) because it results in load imbalance and intercell interference. A selection technique based on cell range extension (CRE) has been proposed for LTE-Advanced HetNets to extend the coverage of PeNBs for load balancing. However, poor CRE bias setting in cell selection inhibits the attainment of desired cell splitting gains. By contrast, a cell selection technique based on adaptive bias is a more effective solution to traffic load balancing in terms of increasing data rate compared with static bias-based approaches. This paper reviews the use of adaptive cell selection in LTE-Advanced HetNets by highlighting the importance of cell load estimation. The general performances of different techniques for adaptive CRE-based cell selection are compared. Results reveal that the adaptive CRE bias of the resource block utilization ratio (RBUR) technique exhibits the highest cell-edge throughput. Moreover, more accurate cell load estimation is obtained in the extended RBUR adaptive CRE bias technique through constant bit rate (CBR) traffic, which further improved load balancing as against the estimation based on the number of user equipment (UE). Finally, this paper presents suggestions for future research directions.


2013 ◽  
Vol E96.B (6) ◽  
pp. 1297-1305
Author(s):  
Takahiro TAKIGUCHI ◽  
Kohei KIYOSHIMA ◽  
Yuta SAGAE ◽  
Kengo YAGYU ◽  
Hiroyuki ATARASHI ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Sign in / Sign up

Export Citation Format

Share Document