Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

Author(s):  
Daniel Hein ◽  
Alexander Hentschel ◽  
Thomas A. Runkler ◽  
Steffen Udluft

This chapter introduces a model-based reinforcement learning (RL) approach for continuous state and action spaces. While most RL methods try to find closed-form policies, the approach taken here employs numerical online optimization of control action sequences following the strategy of nonlinear model predictive control. First, a general method for reformulating RL problems as optimization tasks is provided. Subsequently, particle swarm optimization (PSO) is applied to search for optimal solutions. This PSO policy (PSO-P) is effective for high dimensional state spaces and does not require a priori assumptions about adequate policy representations. Furthermore, by translating RL problems into optimization tasks, the rich collection of real-world-inspired RL benchmarks is made available for benchmarking numerical optimization techniques. The effectiveness of PSO-P is demonstrated on two standard benchmarks mountain car and cart-pole swing-up and a new industry-inspired benchmark, the so-called industrial benchmark.

2016 ◽  
Vol 7 (3) ◽  
pp. 23-42 ◽  
Author(s):  
Daniel Hein ◽  
Alexander Hentschel ◽  
Thomas A. Runkler ◽  
Steffen Udluft

This article introduces a model-based reinforcement learning (RL) approach for continuous state and action spaces. While most RL methods try to find closed-form policies, the approach taken here employs numerical on-line optimization of control action sequences. First, a general method for reformulating RL problems as optimization tasks is provided. Subsequently, Particle Swarm Optimization (PSO) is applied to search for optimal solutions. This Particle Swarm Optimization Policy (PSO-P) is effective for high dimensional state spaces and does not require a priori assumptions about adequate policy representations. Furthermore, by translating RL problems into optimization tasks, the rich collection of real-world inspired RL benchmarks is made available for benchmarking numerical optimization techniques. The effectiveness of PSO-P is demonstrated on the two standard benchmarks: mountain car and cart pole.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Leihua Feng ◽  
Feng Yang ◽  
Wei Zhang ◽  
Hong Tian

The direct-fired system with duplex inlet and outlet ball mill has strong hysteresis and nonlinearity. The original control system is difficult to meet the requirements. Model predictive control (MPC) method is designed for delay problems, but, as the most commonly used rolling optimization method, particle swarm optimization (PSO) has the defects of easy to fall into local minimum and non-adjustable parameters. Firstly, a LS-SVM model of mill output is established and is verified by simulation in this paper. Then, a particle similarity function is proposed, and based on this function a parameter adaptive particle swarm optimization algorithm (HPAPSO) is proposed. In this new method, the weights and acceleration coefficients of PSO are dynamically adjusted. It is verified by two common test functions through Matlab software that its convergence speed is faster and convergence accuracy is higher than standard PSO. Finally, this new optimization algorithm is combined with MPC for solving control problem of mill system. The MPC based on HPAPSO (HPAPSO-MPC) algorithms is compared with MPC based on PAPSO (PAPSO-MPC) and PID control method through simulation experiments. The results show that HPAPSO-MPC method is more accurate and can achieve better regulation performance than PAPSO-MPC and PID method.


Author(s):  
Ryohei Suzuki ◽  
Fukiko Kawai ◽  
Hideyuki Ito ◽  
Chikashi Nakazawa ◽  
Yoshikazu Fukuyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document