Confidential Data Storage Systems for Wearable Platforms

2018 ◽  
pp. 65-83
Author(s):  
Mingzhong Wang ◽  
Don Kerr

With the features of mobility, reality augmentation, and context sensitivity, wearable devices are widely deployed into various domains. However, the sensitivity of collected data makes security and privacy protection one of the first priority in the advancement of wearable technologies. This chapter provides a study on encryption-based confidentiality protection for data storage systems in wearable platforms. The chapter first conducts a review to storage solutions in consumer wearable products and explores a two-tier, local flash memory and remote cloud storage, storage system in wearable platforms. Then encryption-based confidentiality protection and implementation methods for both flash memory and remote cloud storage are summarized. According to the interaction and integration of these two components, a categorization of confidential storage systems in wearable platforms is proposed. In addition, the benefits and selection criteria for each category are also discussed.

Author(s):  
Mingzhong Wang ◽  
Don Kerr

With the features of mobility, reality augmentation, and context sensitivity, wearable devices are widely deployed into various domains. However, the sensitivity of collected data makes security and privacy protection one of the first priority in the advancement of wearable technologies. This chapter provides a study on encryption-based confidentiality protection for data storage systems in wearable platforms. The chapter first conducts a review to storage solutions in consumer wearable products and explores a two-tier, local flash memory and remote cloud storage, storage system in wearable platforms. Then encryption-based confidentiality protection and implementation methods for both flash memory and remote cloud storage are summarized. According to the interaction and integration of these two components, a categorization of confidential storage systems in wearable platforms is proposed. In addition, the benefits and selection criteria for each category are also discussed.


Author(s):  
Spyridon V. Gogouvitis ◽  
Athanasios Voulodimos ◽  
Dimosthenis Kyriazis

Distributed storage systems are becoming the method of data storage for the new generation of applications, as it appears a promising solution to handle the immense volume of data produced in today’s rich and ubiquitous digital environment. In this chapter, the authors first present the requirements end users pose on Cloud Storage solutions. Then they compare some of the most prominent commercial distributed storage systems against these requirements. Lastly, the authors present the innovations the VISION Cloud project brings in the field of Storage Clouds.


Author(s):  
Chun-Ting Huang ◽  
Lei Huang ◽  
Zhongyuan Qin ◽  
Hang Yuan ◽  
Lan Zhou ◽  
...  

Cloud Computing has become a well-known primitive nowadays; many researchers and companies are embracing this fascinating technology with feverish haste. In the meantime, security and privacy challenges are brought forward while the number of cloud storage user increases expeditiously. In this work, we conduct an in-depth survey on recent research activities of cloud storage security in association with cloud computing. After an overview of the cloud storage system and its security problem, we focus on the key security requirement triad, i.e., data integrity, data confidentiality, and availability. For each of the three security objectives, we discuss the new unique challenges faced by the cloud storage services, summarize key issues discussed in the current literature, examine, and compare the existing and emerging approaches proposed to meet those new challenges, and point out possible extensions and futuristic research opportunities. The goal of our paper is to provide a state-of-the-art knowledge to new researchers who would like to join this exciting new field.


2021 ◽  
Vol 23 (09) ◽  
pp. 1105-1121
Author(s):  
Dr. Ashish Kumar Tamrakar ◽  
◽  
Dr. Abhishek Verma ◽  
Dr. Vishnu Kumar Mishra ◽  
Dr. Megha Mishra ◽  
...  

Cloud computing is a new model for providing diverse services of software and hardware. This paradigm refers to a model for enabling on-demand network access to a shared pool of configurable computing resources, that can be rapidly provisioned and released with minimal service provider interaction .It helps the organizations and individuals deploy IT resources at a reduced total cost. However, the new approaches introduced by the clouds, related to computation outsourcing, distributed resources and multi-tenancy concept, increase the security and privacy concerns and challenges. It allows users to store their data remotely and then access to them at any time from any place .Cloud storage services are used to store data in ways that are considered cost saving and easy to use. In cloud storage, data are stored on remote servers that are not physically known by the consumer. Thus, users fear from uploading their private and confidential files to cloud storage due to security concerns. The usual solution to secure data is data encryption, which makes cloud users more satisfied when using cloud storage to store their data. Motivated by the above facts; we have proposed a solution to undertake the problem of cloud storage security. In cloud storage, there are public data that do not need any security measures, and there are sensitive data that need applying security mechanisms to keep them safe. In that context, data classification appears as the solution to this problem. The classification of data into classes, with different security requirements for each class is the best way to avoid under security and over security situation. The existing cloud storage systems use the same Journal of University of Shanghai for Science and Technology ISSN: 1007-6735 Volume 23, Issue 9, September – 2021 Page-1105 key size to encrypt all data without taking into consideration its confidentiality level. Treating the low and high confidential data with the same way and at the same security level will add unnecessary overhead and increase the processing time. In our proposal, we have combined the K-NN (K Nearest Neighbors) machine learning method and the goal programming decision-making method, to provide an efficient method for data classification. This method allows data classification according to the data owner security needs. Then, we introduce the user data to the suitable security mechanisms for each class. The use of our solution in cloud storage systems makes the data security process more flexible, besides; it increases the cloud storage system performance and decreases the needed resources, which are used to store the data.


2018 ◽  
Vol 245 ◽  
pp. 10007 ◽  
Author(s):  
Marina Bolsunovskaya ◽  
Svetlana Shirokova ◽  
Aleksandra Loginova ◽  
Mikhail Uspenskij

The aim of the work is to develop a procedure for conducting an information security audit of the software system for predicting data storage failures in order to identify existing threats to information security, evaluate information security tools, and improve the efficiency of existing information security tools and introduce new ones. It is necessary to monitor the current situation to ensure information security in organizations where data storage systems are used. For this purpose, an audit system has been developed, including both organizational measures and software and hardware parts.


2014 ◽  
Vol 926-930 ◽  
pp. 2462-2465 ◽  
Author(s):  
Hui Xiang Zhou ◽  
Qiao Yan Wen

In order to solve the problem of growing massive of data in sensor network, we propose a new scheme of data storage for sensor network based on HDFS which is a cloud-based storage platform, it effectively alleviate the pressure of mass data storage on sensor network, and improved the scalability of storage system and part of the enhanced the data storage security on sensor network. And this scheme is based on cloud storage platform, storage the data which collected by sensors to each data node using a distributed architecture solution, and keep multiple copies of data in order to maintain its high reliability of data. As reducing the pressure of data storage, but also protects the security of stored data as shown by security analysis.


2014 ◽  
Vol 496-500 ◽  
pp. 1812-1816 ◽  
Author(s):  
Hong Xia Mao

In this paper, an extensible system prototype of cloud storage is designed. Considering the load balance of cloud storage system, an improved data storage strategy based on consistent hashing algorithm is proposed in this paper. The strategy adopts virtual nodes to storage data and real–time monitoring of load rate of each storage node to adjust load balancing of the whole storage system. In the improved strategy, the priority is introduced into the storage system to rapidly improve the utilization rate of the new storage nodes. The strategy can effectively optimize the performance of the whole storage system, and improve the overall effect of the load balancing.


2014 ◽  
Vol 651-653 ◽  
pp. 1000-1003
Author(s):  
Yin Yang ◽  
Wen Yi Li ◽  
Kai Wang

In this paper, we propose a novel and efficient flash translation layer scheme called BLTF: Block Link-Table FTL. In this proposed scheme, all blocks can be used for servicing update requests, so updates operation can be performed on any of the physical blocks, through uniting log blocks and physical blocks, it can avoid uneven erasing and low block utilization. The invalid blocks, in BLTF scheme, could be reclaimed properly and intensively, it can avoid merging log blocks with physical blocks. At last, the BLTF is tested by simulation, which demonstrates the BLTF can effectively solve data storage problems. Through comparison with other algorithms, we can know that the proposed BLTF greatly prolongs service life of flash devices and improves efficiency of blocks erasing operation.


Author(s):  
Igor Boyarshin ◽  
Anna Doroshenko ◽  
Pavlo Rehida

The article describes a new method of improving efficiency of the systems that deal with storage and providing access of shared data of many users by utilizing replication. Existing methods of load balancing in data storage systems are described, namely RR and WRR. A new method of request balancing among multiple data storage nodes is proposed, that is able to adjust to input request stream intensity in real time and utilize disk space efficiently while doing so.


Sign in / Sign up

Export Citation Format

Share Document