Data Storages in Wireless Sensor Networks to Deal With Disaster Management

Author(s):  
Mehdi Gheisari ◽  
Mehdi Esnaashari

Sensor networks are dense wired or wireless networks used for collecting and disseminating environmental data. They have some limitations like energy that usually provide by battery and storages in order that we cannot save any generated data. The most energy consumer of sensors is transmitting. Sensor networks generate immense amount of data. They send collected data to the sink node for storage to response to users queries. Data storage has become an important issue in sensor networks as a large amount of collected data need to be archived for future information retrieval. The rapid development and deployment of sensor technology is intensifying the existing problem of too much data and not enough knowledge. Sensory data comes from multiple sensors of different modalities in distributed locations. In this chapter we investigate some major issues with respect to data storages of sensor networks that can be used for disaster management more efficiently.

Author(s):  
Mehdi Gheisari ◽  
Mehdi Esnaashari

Sensor networks are dense wired or wireless networks used for collecting and disseminating environmental data. They have some limitations like energy that usually provide by battery and storages in order that we cannot save any generated data. The most energy consumer of sensors is transmitting. Sensor networks generate immense amount of data. They send collected data to the sink node for storage to response to users queries. Data storage has become an important issue in sensor networks as a large amount of collected data need to be archived for future information retrieval. The rapid development and deployment of sensor technology is intensifying the existing problem of too much data and not enough knowledge. Sensory data comes from multiple sensors of different modalities in distributed locations. In this chapter we investigate some major issues with respect to data storages of sensor networks that can be used for disaster management more efficiently.


Author(s):  
Mehdi Gheisari ◽  
Mehdi Esnaashari

Sensor networks are dense wired or wireless networks used for collecting and disseminating environmental data. They have some limitations like energy that usually provide by battery and storages in order that we cannot save any generated data. The most energy consumer of sensors is transmitting. Sensor networks generate immense amount of data. They send collected data to the sink node for storage to response to users queries. Data storage has become an important issue in sensor networks as a large amount of collected data need to be archived for future information retrieval. The rapid development and deployment of sensor technology is intensifying the existing problem of too much data and not enough knowledge. Sensory data comes from multiple sensors of different modalities in distributed locations. In this chapter we investigate some major issues with respect to data storages of sensor networks that can be used for disaster management more efficiently.


Author(s):  
Francina Sophiya D. ◽  
Swarnalatha P. ◽  
Prabu Sevugan ◽  
T. D. K Upeksha Chathurani ◽  
R. Magesh Babu

Smart environments based on wireless sensor networks represent the next evolutionary development step in engineering, such as industrial automation, video surveillance, traffic monitoring, and robot control. Sensory data come from multiple networks of interconnected sensors with complex distributed locations. The recent development of communication and sensor technology results in the growth of a new attractive and challenging area: wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors that do not only perceive ambient physical parameters but also are able to process information, cooperate with each other, and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2009 ◽  
Vol 26 (5) ◽  
pp. 335 ◽  
Author(s):  
Norbert Siegmund ◽  
Marko Rosenmuller ◽  
Guido Moritz ◽  
Gunter Saake ◽  
Dirk Timmermann

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3135 ◽  
Author(s):  
Carolina Del-Valle-Soto ◽  
Leonardo J. Valdivia ◽  
Ramiro Velázquez ◽  
Luis Rizo-Dominguez ◽  
Juan-Carlos López-Pimentel

Presently, the Internet of Things (IoT) concept involves a scattered collection of different multipurpose sensor networks that capture information, which is further processed and used in applications such as smart cities. These networks can send large amounts of information in a fairly efficient but insecure wireless environment. Energy consumption is a key aspect of sensor networks since most of the time, they are battery powered and placed in not easily accessible locations. Therefore, and regardless of the final application, wireless sensor networks require a careful energy consumption analysis that allows selection of the best operating protocol and energy optimization scheme. In this paper, a set of performance metrics is defined to objectively compare different kinds of protocols. Four of the most popular IoT protocols are selected: Zigbee, LoRa, Bluethooth, and WiFi. To test and compare their performance, multiple sensors are placed at different points of a university campus to create a network that can accurately simulate a smart city. Finally, the network is analyzed in detail using two different schemes: collaborative and cooperative.


Author(s):  
Majid Bahrepour ◽  
Nirvana Meratnia ◽  
Mannes Poel ◽  
Zahra Taghikhaki ◽  
Paul J.M. Havinga

Sign in / Sign up

Export Citation Format

Share Document