Affordances of Data Science in Agriculture, Manufacturing, and Education

Web Services ◽  
2019 ◽  
pp. 953-978
Author(s):  
Krishnan Umachandran ◽  
Debra Sharon Ferdinand-James

Continued technological advancements of the 21st Century afford massive data generation in sectors of our economy to include the domains of agriculture, manufacturing, and education. However, harnessing such large-scale data, using modern technologies for effective decision-making appears to be an evolving science that requires knowledge of Big Data management and analytics. Big data in agriculture, manufacturing, and education are varied such as voluminous text, images, and graphs. Applying Big data science techniques (e.g., functional algorithms) for extracting intelligence data affords decision markers quick response to productivity, market resilience, and student enrollment challenges in today's unpredictable markets. This chapter serves to employ data science for potential solutions to Big Data applications in the sectors of agriculture, manufacturing and education to a lesser extent, using modern technological tools such as Hadoop, Hive, Sqoop, and MongoDB.

Author(s):  
Krishnan Umachandran ◽  
Debra Sharon Ferdinand-James

Continued technological advancements of the 21st Century afford massive data generation in sectors of our economy to include the domains of agriculture, manufacturing, and education. However, harnessing such large-scale data, using modern technologies for effective decision-making appears to be an evolving science that requires knowledge of Big Data management and analytics. Big data in agriculture, manufacturing, and education are varied such as voluminous text, images, and graphs. Applying Big data science techniques (e.g., functional algorithms) for extracting intelligence data affords decision markers quick response to productivity, market resilience, and student enrollment challenges in today's unpredictable markets. This chapter serves to employ data science for potential solutions to Big Data applications in the sectors of agriculture, manufacturing and education to a lesser extent, using modern technological tools such as Hadoop, Hive, Sqoop, and MongoDB.


2011 ◽  
Vol 7 (S285) ◽  
pp. 340-341
Author(s):  
Dayton L. Jones ◽  
Kiri Wagstaff ◽  
David Thompson ◽  
Larry D'Addario ◽  
Robert Navarro ◽  
...  

AbstractThe detection of fast (< 1 second) transient signals requires a challenging balance between the need to examine vast quantities of high time-resolution data and the impracticality of storing all the data for later analysis. This is the epitome of a “big data” issue—far more data will be produced by next generation-astronomy facilities than can be analyzed, distributed, or archived using traditional methods. JPL is developing technologies to deal with “big data” problems from initial data generation through real-time data triage algorithms to large-scale data archiving and mining. Although most current work is focused on the needs of large radio arrays, the technologies involved are widely applicable in other areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chia-Hui Huang ◽  
Keng-Chieh Yang ◽  
Han-Ying Kao

Big data is a new trend at present, forcing the significant impacts on information technologies. In big data applications, one of the most concerned issues is dealing with large-scale data sets that often require computation resources provided by public cloud services. How to analyze big data efficiently becomes a big challenge. In this paper, we collaborate interval regression with the smooth support vector machine (SSVM) to analyze big data. Recently, the smooth support vector machine (SSVM) was proposed as an alternative of the standard SVM that has been proved more efficient than the traditional SVM in processing large-scale data. In addition the soft margin method is proposed to modify the excursion of separation margin and to be effective in the gray zone that the distribution of data becomes hard to be described and the separation margin between classes.


Web Services ◽  
2019 ◽  
pp. 1706-1716
Author(s):  
S. ZerAfshan Goher ◽  
Barkha Javed ◽  
Peter Bloodsworth

Due to the growing interest in harnessing the hidden significance of data, more and more enterprises are moving to data analytics. Data analytics require the analysis and management of large-scale data to find the hidden patterns among various data components to gain useful insight. The derived information is then used to predict the future trends that can be advantageous for a business to flourish such as customers' likes/dislikes, reasons behind customers' churn and more. In this paper, several techniques for the big data analysis have been investigated along with their advantages and disadvantages. The significance of cloud computing for big data storage has also been discussed. Finally, the techniques to make the robust and efficient usage of big data have also been discussed.


Author(s):  
S. ZerAfshan Goher ◽  
Barkha Javed ◽  
Peter Bloodsworth

Due to the growing interest in harnessing the hidden significance of data, more and more enterprises are moving to data analytics. Data analytics require the analysis and management of large-scale data to find the hidden patterns among various data components to gain useful insight. The derived information is then used to predict the future trends that can be advantageous for a business to flourish such as customers' likes/dislikes, reasons behind customers' churn and more. In this paper, several techniques for the big data analysis have been investigated along with their advantages and disadvantages. The significance of cloud computing for big data storage has also been discussed. Finally, the techniques to make the robust and efficient usage of big data have also been discussed.


Author(s):  
Ulkem Basdas ◽  
M. Fevzi Esen

Massively parallel processors and modern data management architectures have led to more efficient operations and a better decision making for companies to process and analyse such complex and large-scale data. Especially, financial services companies leverage big data to transform their business processes and they focus on understanding the concepts of big data and related technologies. In this chapter, the authors focus on the scope of big data in finance and economics. They discuss the need for big data towards the digitalisation of services, utilisation of social media and new channels to reach customers, demand for personalised services and continuous flow of vast amount of data in the sector. They investigate the role of big data in transformation of financial and economic environment by reviewing previous studies on stock market reading and monitoring (real-time algorithmic trading, high-frequency trading), fraud detection, and risk analysis. They conclude that despite the rapid development in the evolution of techniques, both the performance of techniques and area of implementation are still open to improvement. Therefore, this review aims to encourage readers to enlarge their vision on data mining applications.


2021 ◽  
Author(s):  
Mohammad Hassan Almaspoor ◽  
Ali Safaei ◽  
Afshin Salajegheh ◽  
Behrouz Minaei-Bidgoli

Abstract Classification is one of the most important and widely used issues in machine learning, the purpose of which is to create a rule for grouping data to sets of pre-existing categories is based on a set of training sets. Employed successfully in many scientific and engineering areas, the Support Vector Machine (SVM) is among the most promising methods of classification in machine learning. With the advent of big data, many of the machine learning methods have been challenged by big data characteristics. The standard SVM has been proposed for batch learning in which all data are available at the same time. The SVM has a high time complexity, i.e., increasing the number of training samples will intensify the need for computational resources and memory. Hence, many attempts have been made at SVM compatibility with online learning conditions and use of large-scale data. This paper focuses on the analysis, identification, and classification of existing methods for SVM compatibility with online conditions and large-scale data. These methods might be employed to classify big data and propose research areas for future studies. Considering its advantages, the SVM can be among the first options for compatibility with big data and classification of big data. For this purpose, appropriate techniques should be developed for data preprocessing in order to covert data into an appropriate form for learning. The existing frameworks should also be employed for parallel and distributed processes so that SVMs can be made scalable and properly online to be able to handle big data.


2021 ◽  
Author(s):  
R. Salter ◽  
Quyen Dong ◽  
Cody Coleman ◽  
Maria Seale ◽  
Alicia Ruvinsky ◽  
...  

The Engineer Research and Development Center, Information Technology Laboratory’s (ERDC-ITL’s) Big Data Analytics team specializes in the analysis of large-scale datasets with capabilities across four research areas that require vast amounts of data to inform and drive analysis: large-scale data governance, deep learning and machine learning, natural language processing, and automated data labeling. Unfortunately, data transfer between government organizations is a complex and time-consuming process requiring coordination of multiple parties across multiple offices and organizations. Past successes in large-scale data analytics have placed a significant demand on ERDC-ITL researchers, highlighting that few individuals fully understand how to successfully transfer data between government organizations; future project success therefore depends on a small group of individuals to efficiently execute a complicated process. The Big Data Analytics team set out to develop a standardized workflow for the transfer of large-scale datasets to ERDC-ITL, in part to educate peers and future collaborators on the process required to transfer datasets between government organizations. Researchers also aim to increase workflow efficiency while protecting data integrity. This report provides an overview of the created Data Lake Ecosystem Workflow by focusing on the six phases required to efficiently transfer large datasets to supercomputing resources located at ERDC-ITL.


Sign in / Sign up

Export Citation Format

Share Document