Neural Networks and HOS for Power Quality Evaluation

Author(s):  
Juan J. González De la Rosa ◽  
Carlos G. Puntonet ◽  
A. Moreno-Muñoz

Power quality (PQ) event detection and classification is gaining importance due to worldwide use of delicate electronic devices. Things like lightning, large switching loads, non-linear load stresses, inadequate or incorrect wiring and grounding or accidents involving electric lines, can create problems to sensitive equipment, if it is designed to operate within narrow voltage limits, or if it does not incorporate the capability of filtering fluctuations in the electrical supply (Gerek et. al., 2006; Moreno et. al., 2006). The solution for a PQ problem implies the acquisition and monitoring of long data records from the energy distribution system, along with an automated detection and classification strategy which allows identify the cause of these voltage anomalies. Signal processing tools have been widely used for this purpose, and are mainly based in spectral analysis and wavelet transforms. These second-order methods, the most familiar to the scientific community, are based on the independence of the spectral components and evolution of the spectrum in the time domain. Other tools are threshold-based algorithms, linear classifiers and Bayesian networks. The goal of the signal processing analysis is to get a feature vector from the data record under study, which constitute the input to the computational intelligence modulus, which has the task of classification. Some recent works bring a different strategy, based in higher-order statistics (HOS), in dealing with the analysis of transients within PQ analysis (Gerek et. al., 2006; Moreno et. al., 2006) and other fields of Science (De la Rosa et. al., 2004, 2005, 2007). Without perturbation, the 50-Hz of the voltage waveform exhibits a Gaussian behaviour. Deviations from Gaussianity can be detected and characterized via HOS. Non-Gaussian processes need third and fourth order statistical characterization in order to be recognized. In order words, second-order moments and cumulants could be not capable of differentiate non-Gaussian events. The situation described matches the problem of differentiating between a transient of long duration named fault (within a signal period), and a short duration transient (25 per cent of a cycle). This one could also bring the 50-Hz voltage to zero instantly and, generally affects the sinusoid dramatically. By the contrary, the long-duration transient could be considered as a modulating signal (the 50-Hz signal is the carrier). These transients are intrinsically non-stationary, so it is necessary a battery of observations (sample registers) to obtain a reliable characterization. The main contribution of this work consists of the application of higher-order central cumulants to characterize PQ events, along with the use of a competitive layer as the classification tool. Results reveal that two different clusters, associated to both types of transients, can be recognized in the 2D graph. The successful results convey the idea that the physical underlying processes associated to the analyzed transients, generate different types of deviations from the typical effects that the noise cause in the 50-Hz sinusoid voltage waveform. The paper is organized as follows: Section on higher-order cumulants summarizes the main equations of the cumulants used in the paper. Then, we recall the competitive layer’s foundations, along with the Kohonen learning rule. The experience is described then, and the conclusions are drawn.

Author(s):  
M. Sanaullah

There are many statistical tools to extract information from random signals. They predominantly use first and second order statistics. However, in the presence of nonlinearity in systems, many signals cannot be analyzed adequately by second order statistical methods. For this reason, higher order statistical methods have been developed. These methods are very useful in problems where non-Gaussian, non-minimum phase, phase coupling or nonlinear behavior and robustness to additive noise are important. Detection and classification using higher order statistical and spectral techniques have been proposed for use in communication and pattern recognition. They have the potential to elicit better performance from sensors, sensor networks and channels with applications in coding, filtering and detection techniques. This paper provides an introduction to higher order spectra and reviews a number of these techniques.


2020 ◽  
Vol 34 (04) ◽  
pp. 3422-3429
Author(s):  
Chao Chen ◽  
Zhihang Fu ◽  
Zhihong Chen ◽  
Sheng Jin ◽  
Zhaowei Cheng ◽  
...  

Minimizing the discrepancy of feature distributions between different domains is one of the most promising directions in unsupervised domain adaptation. From the perspective of moment matching, most existing discrepancy-based methods are designed to match the second-order or lower moments, which however, have limited expression of statistical characteristic for non-Gaussian distributions. In this work, we propose a Higher-order Moment Matching (HoMM) method, and further extend the HoMM into reproducing kernel Hilbert spaces (RKHS). In particular, our proposed HoMM can perform arbitrary-order moment matching, we show that the first-order HoMM is equivalent to Maximum Mean Discrepancy (MMD) and the second-order HoMM is equivalent to Correlation Alignment (CORAL). Moreover, HoMM (order≥ 3) is expected to perform fine-grained domain alignment as higher-order statistics can approximate more complex, non-Gaussian distributions. Besides, we also exploit the pseudo-labeled target samples to learn discriminative representations in the target domain, which further improves the transfer performance. Extensive experiments are conducted, showing that our proposed HoMM consistently outperforms the existing moment matching methods by a large margin. Codes are available at https://github.com/chenchao666/HoMM-Master


2019 ◽  
Vol 4 (2) ◽  
pp. 101-111
Author(s):  
Fatma Zohra DEKHANDJI ◽  
Salim TALHAOUI ◽  
Youcef ARKAB

In recent years, Power Quality becomes increasingly a major concern for both electric utilities and end users. Accordingly, the electrical engineering community has to deal with the analysis, diagnosis and solution of PQ issues using system approach rather than handling these issues as individual problems. This paper describes the analysis of PQ using advanced signal processing tools represented in Hilbert & Wavelet Transforms (HT-WT) and artificial intelligence tools represented in Artificial Neural Network & Support Vector Machine (ANN-SVM) for detection and classification of power quality disturbances respectively. These techniques were successfully simulated using LABVIEW software capabilities. The results of simulation indicate that the signal processing techniques are effective mechanisms to detect and classify power quality disturbances. At the end, the combination of WT as a tool of detection and features extraction with SVM as a classifier tool resulted as the best combination for PQ monitoring system.


Author(s):  
Fatma Zohra Dekhandji ◽  
Mohamed Cherif Rais

In recent years, power quality (PQ) has become an increasingly major concern for both electric utilities and the end users. Accordingly, the electrical engineering community has to deal with the analysis, diagnosis, and solution of PQ issues using system approach rather than handling these issues as individual problems. This chapter describes the analysis of PQ using advanced signal processing tools represented in Hilbert and wavelet transforms (HT-WT) and artificial intelligence tools represented in artificial neural network and support vector machine (ANN-SVM) for detection and classification of power quality disturbances, respectively. These techniques were successfully simulated using LABVIEW software capabilities. The results of simulation indicate that the signal processing techniques are effective mechanisms to detect and classify power quality disturbances. At the end, the combination of WT as a tool of detection and features extraction with SVM as a classifier tool resulted as the best combination for PQ monitoring system.


1991 ◽  
Vol 44 (11S) ◽  
pp. S214-S218 ◽  
Author(s):  
C. Pezeshki ◽  
W. H. Miles ◽  
S. Elgar

Various signal processing techniques are introduced into the structural dynamics literature, notably higher-order spectra for steady-state response and wavelet transforms for transient response of systems. The structural behavior of the buckled beam, modeled by the one-mode Galerkin approximation is examined to demonstrate the utility of the techniques. Higher-order spectra illuminate nonlinear energy coupling mechanisms in the frequency domain for the steady state response. Wavelet transforms show the development of the frequency spectrum in the transient portion of the response.


2020 ◽  
Vol 26 ◽  
pp. 37 ◽  
Author(s):  
Elimhan N. Mahmudov

The present paper studies the Mayer problem with higher order evolution differential inclusions and functional constraints of optimal control theory (PFC); to this end first we use an interesting auxiliary problem with second order discrete-time and discrete approximate inclusions (PFD). Are proved necessary and sufficient conditions incorporating the Euler–Lagrange inclusion, the Hamiltonian inclusion, the transversality and complementary slackness conditions. The basic concept of obtaining optimal conditions is locally adjoint mappings and equivalence results. Then combining these results and passing to the limit in the discrete approximations we establish new sufficient optimality conditions for second order continuous-time evolution inclusions. This approach and results make a bridge between optimal control problem with higher order differential inclusion (PFC) and constrained mathematical programming problems in finite-dimensional spaces. Formulation of the transversality and complementary slackness conditions for second order differential inclusions play a substantial role in the next investigations without which it is hardly ever possible to get any optimality conditions; consequently, these results are generalized to the problem with an arbitrary higher order differential inclusion. Furthermore, application of these results is demonstrated by solving some semilinear problem with second and third order differential inclusions.


2017 ◽  
Vol 1 (15) ◽  
pp. 37-42
Author(s):  
J.M. Sierra-Fernández ◽  
J.J. González De La Rosa ◽  
A. Agüera-Pérez ◽  
J.C. Palomares Salas ◽  
O. Florencias-Oliveros

Sign in / Sign up

Export Citation Format

Share Document