Bluetooth Devices Effect on Radiated EMS of Vehicle Wiring

Author(s):  
Miguel A. Ruiz ◽  
Felipe Espinosa ◽  
David Sanguino ◽  
AbdelBaset Awawdeh

The electromagnetic energy source used by wireless communication devices in a vehicle can cause electromagnetic compatibility problems with the electrical and electronic equipment on board. This work is focused on the radiated susceptibility (electromagnetic susceptibility [EMS]) issue and proposes a method for quantifying the electromagnetic influence of wireless radio frequency (RF) transmitters on board vehicles. The key to the analysis is the evaluation of the relation between the electrical field emitted by a typical Bluetooth device operating close to the automobile’s electrical and electronic systems and the field level specified by the electromagnetic compatibility (EMC) directive 2004/104/EC for radiated susceptibility tests. The chapter includes the model of a closed circuit structure emulating an automobile electric wire system and the simulation of its behaviour under electromagnetic fields’ action. According to this a physical structure is designed and implemented, which is used for laboratory tests. Finally, simulated and experimental results are compared and the conclusions obtained are discussed.

Author(s):  
Showkat Ahmad Bhat ◽  
Amandeep Singh

Background & Objective: Digital multimedia exchange between different mobile communication devices has increased rapidly with the invention of the high-speed data services like LTE-A, LTE, and WiMAX. However, there are always certain security risks associated with the use of wireless communication technologies. Methods: To protect the digital images against cryptographic attacks different image encryption algorithms are being employed in the wireless communication networks. These algorithms use comparatively less key spaces and accordingly offer inadequate security. The proposed algorithm described in this paper based on Rubik’s cube principle because of its high confusion and diffusion properties, Arnold function having effective scrambling power, blocking cipher with block encryption and permutation powers. The main strength of the proposed algorithm lies in the large key spaces and the combination of different high power encryption techniques at each stage of algorithm. The different operations employed on the image are with four security keys of different key spaces at multiple stages of the algorithm. Results & Conclusion: Finally, the effectiveness and the security analysis results shows that the proposed image encryption algorithm attains high encryption and security capabilities along with high resistance against cryptanalytic attacks, differential attacks and statistical attacks.


Sign in / Sign up

Export Citation Format

Share Document