Introduction to Wireless Sensor Network Localization

Author(s):  
Guoqiang Mao ◽  
Baris Fidan

Localization is an important aspect in the field of wireless sensor networks that has attracted significant research interest recently. The interest in wireless sensor network localization is expected to grow further with the advances in the wireless communication techniques and the sensing techniques, and the consequent proliferation of wireless sensor network applications. This chapter provides an overview of various aspects involved in the design and implementation of wireless sensor network localization systems. These can be broadly classified into three categories: the measurement techniques in sensor network localization, sensor network localization theory and algorithms, and experimental study and applications of sensor network localization techniques. This chapter also gives a brief introduction to the other chapters in the book with a focus on explaining how these chapters are related to each other and how topics covered in each chapter fit into the architecture of this book and the big picture of wireless sensor network localization.

2016 ◽  
Vol 16 (11) ◽  
pp. 4631-4637 ◽  
Author(s):  
Juan Cota-Ruiz ◽  
Pablo Rivas-Perea ◽  
Ernesto Sifuentes ◽  
Rafael Gonzalez-Landaeta

2016 ◽  
Vol 40 ◽  
pp. 61-72 ◽  
Author(s):  
Angel Stanoev ◽  
Sonja Filiposka ◽  
Visarath In ◽  
Ljupco Kocarev

2017 ◽  
Vol 13 (12) ◽  
pp. 52 ◽  
Author(s):  
Bo Guan ◽  
Xin Li

<p style="margin: 1em 0px;"><span style="font-family: Times New Roman; font-size: medium;">This paper studies the wireless sensor network localization algorithm based on the received signal strength indicator (RSSI) in detail. Considering the large errors in ranging and localization of nodes made by the algorithm, this paper corrects and compensates the errors of the algorithm to improve the coordinate accuracy of the node. The improved node localization algorithm performs error checking and correction on the anchor node and the node to be measured, respectively so as to make the received signal strength value of the node to be measured closer to the real value. It corrects the weighting factor by using the measured distance between communication nodes to make the coordinate of the node to be measured more accurate. Then, it calculates the mean deviation of localization based on the anchor node close to the node to be measured and compensates the coordinate error. Through the simulation experiment, it is found that the new localization algorithm with error checking and correction proposed in this paper improves the localization accuracy by 5%-6% compared with the weighted centroid algorithm based on RSSI.</span></p>


Sign in / Sign up

Export Citation Format

Share Document