Load Balancing in Peer-to-Peer Systems

Author(s):  
Haiying Shen

Structured peer-to-peer (P2P) overlay networks like Distributed Hash Tables (DHTs) map data items to the network based on a consistent hashing function. Such mapping for data distribution has an inherent load balance problem. Thus, a load balancing mechanism is an indispensable part of a structured P2P overlay network for high performance. The rapid development of P2P systems has posed challenges in load balancing due to their features characterized by large scale, heterogeneity, dynamism, and proximity. An efficient load balancing method should flexible and resilient enough to deal with these characteristics. This chapter will first introduce the P2P systems and the load balancing in P2P systems. It then introduces the current technologies for load balancing in P2P systems, and provides a case study of a dynamism-resilient and proximity-aware load balancing mechanism. Finally, it indicates the future and emerging trends of load balancing, and concludes the chapter.

2010 ◽  
Vol 439-440 ◽  
pp. 870-874 ◽  
Author(s):  
Ming Zhang ◽  
Jin Qiu Yang

Structured peer-to-peer (P2P) systems are creating a large proportion of network traffic in today’s Internet. Peer-to-peer systems enable access to data spread over an extremely large number of machines. A P2P system typically involves thousands or millions of live peers in the network. Multi-dimensional data indexing has received much attention in a centralized database. In this paper, we propose and evaluate a multi-dimensional searching scheme in structured P2P networks. We present the design and implementation of a peer-to-peer index service for high dimensional data that is capable of handling complex queries. We design a VibIndex scheme in structured P2P overlay networks. We analyze this scheme’s performance and present simulation results. Our simulation results demonstrated the benefits of the proposed system and show that the approach is able to search efficiently.


Computing ◽  
2012 ◽  
Vol 94 (8-10) ◽  
pp. 649-678 ◽  
Author(s):  
Ying Qiao ◽  
Gregor v. Bochmann

2021 ◽  
Author(s):  
Hoda R.K. Nejad

With the emergence of wireless devices, service delivery for ad-hoc networks has started to attract a lot of attention recently. Ad-hoc networks provide an attractive solution for networking in the situations where network infrastructure or service subscription is not available. We believe that overlay networks, particularly peer-to-peer (P2P) systems, is a good abstraction for application design and deployment over ad-hoc networks. The principal benefit of this approach is that application states are only maintained by the nodes involved in the application execution and all other nodes only perform networking related functions. On the other hand, data access applications in Ad-hoc networks suffer from restricted resources. In this thesis, we explore how to use Cooperative Caching to improve data access efficiency in Ad-hoc network. We propose a Resource-Aware Cooperative Caching P2P system (RACC) for data access applications in Ad-hoc networks. The objective is to improve data availability by considering energy of each node, demand and supply of network. We evaluated and compared the performance of RACC with Simple Cache, CachePath and CacheData schemes. Our simulation results show that RACC improves the lay of query as well as energy usage of the network as compared to Simple Cache, CachePath and CacheData.


2012 ◽  
pp. 232-259
Author(s):  
Eddy Caron ◽  
Frédéric Desprez ◽  
Franck Petit ◽  
Cédric Tedeschi

Within distributed computing platforms, some computing abilities (or services) are offered to clients. To build dynamic applications using such services as basic blocks, a critical prerequisite is to discover those services. Traditional approaches to the service discovery problem have historically relied upon centralized solutions, unable to scale well in large unreliable platforms. In this chapter, we will first give an overview of the state of the art of service discovery solutions based on peer-to-peer (P2P) technologies that allow such a functionality to remain efficient at large scale. We then focus on one of these approaches: the Distributed Lexicographic Placement Table (DLPT) architecture, that provide particular mechanisms for load balancing and fault-tolerance. This solution centers around three key points. First, it calls upon an indexing system structured as a prefix tree, allowing multi-attribute range queries. Second, it allows the mapping of such structures onto heterogeneous and dynamic networks and proposes some load balancing heuristics for it. Third, as our target platform is dynamic and unreliable, we describe its powerful fault-tolerance mechanisms, based on self-stabilization. Finally, we present the software prototype of this architecture and its early experiments.


2020 ◽  
Vol 16 (3) ◽  
pp. 1-16
Author(s):  
Hong He

In recent years, peer-to-peer (P2P) systems have become a promising paradigm to provide efficient storage service in distributed environments. Although its effectiveness has been proven in many areas, the data consistency problem in P2P systems are still an opening issue. This article proposes a novel data consistence model, virtual peers-based data consistency (VPDC), which introduces a set of virtual peers to provide guaranteed data consistency in decentralized and unstructured P2P systems. The VPDC model can be easily implemented in any P2P system without introducing any interference to data retrieval. Theoretical analysis on VPDC is presented to analyze its effectiveness and efficiency, and massive experiments are conducted to evaluate the performance of a VPDC model in a real-world P2P system. The results indicate that it can significantly improve the data consistence of P2P systems and outperform many similar approaches in various experimental settings.


2011 ◽  
pp. 101-119
Author(s):  
Ernesto Damiani ◽  
Marco Viviani

Peer-to-peer (P2P) systems represent nowadays a large portion of Internet traffic, and are fundamental data sources. In a pure P2P system, since no peer has the power or responsibility to monitor and restrain others behaviours, there is no method to verify the trustworthiness of shared resources, and malicious peers can spread untrustworthy data objects to the system. Furthermore, data descriptions are often simple features directly connected to data or annotations based on heterogeneous schemas, a fact that makes difficult to obtain a single coherent trust value on a resource. This chapter describes techniques where the combination of Semantic Web and peer-to-peer technologies is used for expressing the knowledge shared by peers in a well-defined and formal way. Finally, dealing with Semantic-based P2P networks, the chapter suggests a research effort in this direction, where the association between cluster-based overlay networks and reputation systems based on numerical approaches seems to be promising.


2018 ◽  
Vol 35 (3) ◽  
pp. 380-388 ◽  
Author(s):  
Wei Zheng ◽  
Qi Mao ◽  
Robert J Genco ◽  
Jean Wactawski-Wende ◽  
Michael Buck ◽  
...  

Abstract Motivation The rapid development of sequencing technology has led to an explosive accumulation of genomic data. Clustering is often the first step to be performed in sequence analysis. However, existing methods scale poorly with respect to the unprecedented growth of input data size. As high-performance computing systems are becoming widely accessible, it is highly desired that a clustering method can easily scale to handle large-scale sequence datasets by leveraging the power of parallel computing. Results In this paper, we introduce SLAD (Separation via Landmark-based Active Divisive clustering), a generic computational framework that can be used to parallelize various de novo operational taxonomic unit (OTU) picking methods and comes with theoretical guarantees on both accuracy and efficiency. The proposed framework was implemented on Apache Spark, which allows for easy and efficient utilization of parallel computing resources. Experiments performed on various datasets demonstrated that SLAD can significantly speed up a number of popular de novo OTU picking methods and meanwhile maintains the same level of accuracy. In particular, the experiment on the Earth Microbiome Project dataset (∼2.2B reads, 437 GB) demonstrated the excellent scalability of the proposed method. Availability and implementation Open-source software for the proposed method is freely available at https://www.acsu.buffalo.edu/~yijunsun/lab/SLAD.html. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document