Semi-Fragile Image Watermarking, Authentication and Localization Techniques for Law Enforcement Applications

Author(s):  
Xi Zhao ◽  
Anthony T.S. Ho

With the tremendous growth and use of digital cameras and video devices, the need to verify the collected digital content for law enforcement applications such as crime scene investigations and traffic violations, becomes paramount if they are to be used as evidence in courts. Semi-fragile watermarking has become increasingly important within the past few years as it can be used to verify the content of images by accurately localising the tampered area and tolerating some non-malicious manipulations. There have been a number of different transforms used for semi-fragile image watermarking. In this chapter, we present two novel transforms for semi-fragile watermarking, using the Slant transform (SLT) as a block-based algorithm and the wavelet-based contourlet transform (WBCT) as a non-block based algorithm. The proposed SLT is compared with existing DCT and PST semi-fragile watermarking schemes. Experimental results using standard test images and simulated law enforcement images indicate that the SLT is more accurate for copy and paste attacks with non-malicious manipulations, such as additive Gaussian noise. For the proposed WBCT method, watermarking embedding is performed by modulating the parent-children relationship in the contourlet domain. Again, experimental results using the same test images have demonstrated that our proposed WBCT method achieves good performances in localising the tampered regions, even when the image has been subjected to non-malicious manipulations such as JPEG/JPEG2000 compressions, Gaussian noise, Gaussian filtering, and contrast stretching. The average miss detection rate is found to be approximately 1% while maintaining an average false alarm rate below 6.5%.

2015 ◽  
Vol 7 (3) ◽  
pp. 60-80 ◽  
Author(s):  
Nana Wang ◽  
Xiangjun Zhao ◽  
Han Zhang

In this paper, the authors propose a block-based reversible watermarking method for 2D vector map authentication. In the scheme, they divide the features of a vector map into different categories of blocks, calculate an authentication watermark for each block, and embed the watermarks of different blocks using a reversible watermarking method based on virtual coordinates and a fragile watermarking algorithm based on concentric circles. While the block division ensures superior accuracy of tamper localization, the two watermarking methods provide recovery of the original content. Experimental results show that the proposed scheme has good invisibility, reversibility and computational complexity, and can accurately locate malicious attacks such as vertex modification/addition/deletion and feature modification/addition/deletion.


2013 ◽  
Vol 21 (2) ◽  
Author(s):  
Y. Chang ◽  
W. Tai

AbstractIn this paper, we present an effective block-based digital fragile watermarking scheme for image tamper detection and recovery. The proposed scheme embeds watermarks consisting of the authentication data and the recovery data into image blocks. It adopts parity check and the intensity-relation check to thwart various malicious attacks. In the tamper detection process, instead of independently testing the embedded authentication data of each block, we take the block-neighbourhood into account and utilize a hierarchical structure to determine the legitimacy of image blocks. Experimental results show that the proposed scheme can effectively resist collage attack, vector quantization (VQ) attack and constant-average attack, while sustaining superior accuracy of tamper localization. Furthermore, the results reveal that the tampered images can be successfully self-recovered with acceptable visual quality.


In this paper, an algorithm for digital image watermarking which utilizes the hybridization technique is presented. The hybrid technique is formulated by combining the Redundant Wavelet Transform (RDWT) with Fractional Fourier Transform (FrFT) and Singular Value Decomposition (SVD). In this technique, watermark information is embedded in the low frequency band of Redundant Wavelet Transform. To increase the robustness, FrFT is implemented on low frequency coefficients of RDWT. Experimental results have been demonstrated on the basis of Peak Signal to Noise Ratio (PSNR), Correlation Coefficient (CC), and Gradient Magnitude Similarity Deviation (GMSD). A comparable improvement is witnessed from the results in terms of qualitative and quantitative analysis. The experimental results prove to be robust against various image processing and geometrical attacks applied on the standard test images.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 255
Author(s):  
Mario Gonzalez-Lee ◽  
Hector Vazquez-Leal ◽  
Luis J. Morales-Mendoza ◽  
Mariko Nakano-Miyatake ◽  
Hector Perez-Meana ◽  
...  

In this paper, we explore the advantages of a fractional calculus based watermarking system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking scheme and replaced the detection equation set by another set of equations derived from fractional calculus principles; then, we carried out a statistical assessment of the performance of both schemes by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage (FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a fractional equation based scheme has 48.3% more Area Under the Curve (AUC) and a False Positives Percentage median of 0.2% whilst the selected typical watermarking scheme has 3%. In addition, the experimental results suggest that the target applications of fractional schemes for detecting Gaussian watermarks are as a semi-fragile image watermarking systems robust to Gaussian noise.


2012 ◽  
Vol 546-547 ◽  
pp. 410-415
Author(s):  
Chun Ge Tang ◽  
Tie Sheng Fan ◽  
Lei Liu ◽  
Zhi Hui Li

A new blind digital watermarking algorithm based on the chain code is proposed. The chain code is obtained by the characteristics of the original image -the edge contour. The feather can reflect the overall correlation of the vector image, and chain code expression can significantly reduce the boundary representation of the amount of data required. For the watermarking embedding, the original vector image is divided into sub-block images, and two bits of the watermarking information are embedded into sub-block images repeatedly by quantization. For watermarking extracting, the majority decision method is employed to determine the size of the extracted watermark. Experimental results show that the image quality is not significantly lowered after watermarking. The algorithm can resist the basic conventional attacks and has good robustness on the shear attacks.


2014 ◽  
Vol 4 (1-2) ◽  
Author(s):  
Thien Huynh-The ◽  
Thuong Le-Tien ◽  
Tuan Nguyen-Thanh

In the paper, a robust blind watermarking method is introduced for gray-scale images based on wavelet tree quantization with an adaptive threshold in the extraction. Every block of 2×2 coefficients of High-Low subbands of the Wavelet tranform are grouped in a block through the parent-child relationship of the wavelet tree. Every scrambled binary watermark bit is embedded into each block based on the difference value of two largest coefficients. The watermark is recovered by comparing the difference values in each block to an adaptive threshold. The accuracy of an extracted watermark depends on the threshold which is determined by minimizing the sum of weighted within-class variance. The performance of the proposed watermarking method is represented through experimental results under various types of attack such as, Histogram Equalization, Cropping, Low-pass Filtering, Gaussian noise, Salt & Pepper noise and JPEG compression. In additions, the proposed method is also compared to recent methods in the extraction performance.


Sign in / Sign up

Export Citation Format

Share Document