A Generic Framework for Bluetooth Promoted Multimedia on Demand (BlueProMoD)

Author(s):  
Panayotis Fouliras ◽  
Nikolaos Samaras

In recent years many technologies have converged to integrated solutions and one of the hottest topics has been the deployment of wireless personal area networks (WPANs). In this article we present a generic architecture scheme that allows voice and other real-time traffic to be carried over longer distances. The proposed scheme is a novel framework that combines a wired backbone network including Bluetooth access points (APs) with the mobile Bluetooth-enabled devices of the end users. This scheme is called Bluetooth Promoted Multimedia on Demand (BlueProMoD). BlueProMoD is a hybrid network and provides free-of-charge communication among customers, multimedia advertisements, as well as location-based and other value-added services.

Author(s):  
Panayotis Fouliras

In recent years many technologies have converged to integrated solutions and one of the hottest topics has been the deployment of wireless personal area networks (WPANs). In this article we present a generic architecture scheme that allows voice and other real-time traffic to be carried over longer distances. The proposed scheme is a novel framework that combines a wired backbone network including Bluetooth access points (APs) with the mobile Bluetooth-enabled devices of the end users. This scheme is called Bluetooth Promoted Multimedia on Demand (BlueProMoD). BlueProMoD is a hybrid network and provides free-of-charge communication among customers, multimedia advertisements, as well as location-based and other value-added services.


2009 ◽  
Vol 16 (4) ◽  
pp. 1109-1121 ◽  
Author(s):  
Byung-Seo Kim ◽  
Sung Won Kim ◽  
Yuguang Fang ◽  
Tan F. Wong

Author(s):  
Mohammad Anbar ◽  
D.P. Vidyarthi

Cellular IP network deals with micro mobility of the mobile devices. An important challenge in wireless communication, especially in cellular IP based network, is to provide good Quality of Service (QoS) to the users in general and to the real-time users (users involved in the exchange of real-time packets) in particular. Reserving bandwidth for real time traffic to minimize the connection drop (an important parameter) is an activity often used in Cellular IP network. Particle Swarm Optimization (PSO) algorithm simulates the social behavior of a swarm or flock to optimize some characteristic parameter. PSO is effectively used to solve many hard optimization problems. The work, in this paper, proposes an on demand bandwidth reservation scheme to improve Connection Dropping Probability (CDP) in cellular IP network by employing PSO. The swarm, in the model, consists of the available bandwidth in the seven cells of the cellular IP network. The anytime bandwidth demand for real-time users is satisfied by the available bandwidth of the swarm. The algorithm, used in the model, searches for the availability of the bandwidth and reserves it in the central cell of the swarm. Eventually, it will allocate it on demand to the cell that requires it. Simulation experiments reveal the efficacy of the model.


Author(s):  
Lorenzo Invidia ◽  
Silvio Lucio Oliva ◽  
Andrea Palmieri ◽  
Luigi Patrono ◽  
Piercosimo Rametta

The Internet of Things (IoT) is characterized by many technologies, standards, tools and devices for a wide range of application fields and often, for the end-users (makers and developers), is hard to orientate in an equally wide range of offers from various manufacturers. In recent years, the Bluetooth Low Energy (BLE) communication protocol is achieving a large portion of the market, thanks to its low-power and low-cost orientation and its pervasiveness in mobile devices, like smartphones. For these reasons, BLE is increasingly used in IoT-oriented Wireless Personal Area Networks (WPAN), where a small set of devices arranged in star topology network and connected to a smartphone and a Wi-Fi gateway, can cover a large number of monitoring and controlling use case scenarios. This work presents the ST’s STM32 Open Development Environment (ODE), a complete suite of hardware and software tools representing a reference point for end-users willing to create BLE-based star topology networks for a wide range of applications. Through a simple use case in a smart home context, it is shown how all provided tools can be used to fast prototype applications addressing all user requirements.


Sign in / Sign up

Export Citation Format

Share Document