Node Localization in Ad-hoc Networks

Author(s):  
Zhonghai Wang ◽  
Seyed (Reza) Zekavat

This chapter introduces node localization techniques in ad-hoc networks including received signal strength (RSS), time-of-arrival (TOA) and direction-of-arrival (DOA). Wireless channels in ad-hoc networks can be categorized as LOS and NLOS. In LOS channels, the majority of localization techniques perform properly. However, in NLOS channels, the performance of these techniques reduces. Therefore, non-line-of-sight (NLOS) identification and mitigation techniques, and localization techniques for NLOS scenarios are briefly reviewed.

Vehicular Ad Hoc Networks (VANET) are useful in implementing a smart transportation system by enabling ad hoc vehicle to vehicle communication. Sybil attack is considered to be one of the most dangerous threats to VANET. Sybil aggressor can produce different phony personalities with false messages to extremely hinder the ordinary elements of wellbeing related applications. In this paper, we are presenting an implementation of a method to detect Sybil attack using received signal strength indicator.


2021 ◽  
Author(s):  
Altaf Hussain ◽  
Muhammad Rafiq Khan

Abstract Mobile Ad-hoc Network (MANET) is the most emerging and fast expanding technology since the last two decades. One of the major issue and challenging area in MANET is the process of routing due to dynamic topologies and high mobility of mobile nodes. The exchange of information from source to a destination is known as the process of routing. Spectacular amount of attention has been paid by researchers to reliable routing in ad-hoc networks. Efficiency and accuracy of a protocol depends on many parameters in these networks. In addition to other parameters node velocity and propagation models are among them. Calculating signal strength at receiver is the responsibility of a propagation model while mobility of nodes is responsible for topology of the network. A huge amount of loss in performance is occurred due to variation of signal strength at receiver and obstacles between transmissions. Simulation tools are developed to analyze the weakness and strength of protocols along with different parameters that may impact the performance. The choice of a propagation models have an abundant effect on performance on routing protocols in MANET. In this research, it has been analyzed to check the impact of different propagation models on the performance of Optimized Link State Routing (OLSR) in Sparse and Dense scenarios in MANET. The simulation has been carried out in NS-2 by using performance metrics as average Throughput, average packet drop and average latency. The results predicted that propagation models and mobility has a strong impact on the performance of OLSR in considered scenarios.


Sign in / Sign up

Export Citation Format

Share Document